PROCEEDINGS OF GEOSEA XIV AND 45th IAGI ANNUAL CONVENTION 2016
"ASEAN Earth Resources and Geoscientist Role in AEC Era".
10-13 October 2016, Bandung, Indonesia

IKATAN AHLI GEOLOGI INDONESIA (IAGI)
Indonesia Association of Geologist

Ikatan Ahli Geologi Indonesia (IAGI)
Jl. Prof. Dr. Supomo, SH. No 231, Jakarta, 12870
Telp/Fax : 021 - 8370 2848 / 8378 9431 Email : iagisek@cbn.net.id
PROCEEDINGS
GEOSEA XIV AND 45TH IAGI ANNUAL CONVENTION 2016 (GIC2016)
The Trans Luxury Hotel, Bandung, October 10 – 13, 2016

PROCEEDINGS OF GEOSEA XIV AND 45th IAGI ANNUAL
CONVENTION 2016
10-13 October 2016, Bandung, Indonesia
Ikatan Ahli Geologi Indonesia (IAGI)
Indonesia Association of Geologist (IAGI)

Chief Editor : Prof. Mega F. Rosana
Proceedings Editor :
1. Nurcahyo Basuki (Institut Teknologi Bandung)
2. Rina Zuraida (PPPGL)
3. Cindi Kamelina (IAGI)
4. Fisco Raseno (Phoenix Geosystem Indonesia)

Paper Reviewers :
1. Euis T. Yuningsih (Universitas Padjadjaran)
2. Abdurrokhim (Universitas Padjadjaran)
3. Budi Muljana (Universitas Padjadjaran)
4. Hermes Panggabean (Universitas Padjadjaran)
5. Gatot Sudrajat (Badan Geologi)
6. Agus Didit (Universitas Padjadjaran)
7. Ninik Rina H (Universitas Padjadjaran)
8. Zufialdi Zakaria (Universitas Padjadjaran)
9. Muhammad Wafid (Badan Geologi)
10. Heryadi Rachmat (Badan Geologi)
11. Dida Kusnida (PPPGL)

Cover Design by Haris Siagian (Independent)
Proceedings is published by Ikatan Ahli Geologi Indonesia (IAGI)
Indonesia Association of Geologist

Ikatan Ahli Geologi Indonesia (IAGI)
Dr. Soepomo No 231, Jakarta, 12870
Telp /Fax : 021 - 8370 2848 / 8378 9431
Email : iagisek@cbn.net.id
PREFACE

The 45th Annual Scientific Convention of the Indonesian Association of Geologists (IAGI) this year has been held in conjunction with the GEOSEA Congress XIV (abbreviated as GIC-2016). The GEOSEA is a communication forum for the geologists in Southeast Asia countries.

The main theme of the event which is the ASEAN Earth Resources and Geoscientist Role in AEC (ASEAN Economic Community) Era has made the papers submitted and presented in the event covering a wide range of variety. The main theme covering two main topics, i.e. earth resources and geoscientist development in ASEAN countries has also been represented by the papers presented in this event.

Although since several years ago, the earth resource industry situation has not been that bright, triggered by the declining of commodity prices, regulation uncertainty, and also other issues related to the local stakeholders; this GIC 2016 event has attracted significant numbers of participants including industry geologists, faculty staff from the universities, government agencies, contractor companies, and other experts. It is the IAGI’s pride to present this GIC 2016 event for the benefit of geological society in both Indonesia and ASEAN countries.

The proceedings contain all papers presented in the GIC 2016, covering various topics including

1. Engineering Geology, Hydrogeology, Mitigation and Applied Geology
2. Geology and Geophysics Method and Application
3. Geotourism
4. Mineral And Energy Resources Management
5. Mineralogy, Petrology, Geochemistry
7. Tectonic, Structural Geology and Geodynamic
8. Volcanology and Geothermal

They are written by experts from various geology background including industry, government institutions, and universities.

On behalf of IAGI, we would like to thank all authors, paper reviewers, editorial team, and also to all sponsors from industry and government for their contributions and involvements. Without all of them the GIC 2016 event and the publication of this proceeding will not happened.

Bandung, October 2016

Sukmandaru Prihatmoko
Chairman of IAGI (Indonesian Association of Geologists)
TABLE OF CONTENTS

Cover .. i
Proceedings Of Geosea XIV And 45th IAGI Annual Convention 2016.. ii
Preface ... iii
Table Of Contents .. iv
Oral Presentation Engineering Geology, Hydrogeology, Mitigation And Applied Geology 1
Oral Presentation Geology And Geophysics Method And Application ... 78
Oral Presentation Geotourism ... 142
Oral Presentation Mineral And Energy Resources Management .. 155
Oral Presentation Tectonic, Structural Geology And Geodynamic .. 348
Oral Presentation Sedimentology, Stratigraphy, And Petroleum Geology ... 401
Oral Presentation Volcanology And Geothermal ... 727
Poster Presentation
Radioactive Mineral Occurrences on Submarine Alkaline Volcanic Rocks in West Tapalang, Mamuju, West Sulawesi, Indonesia.
I G. Sukadana, and F. D. Indrastomo
Centre for Nuclear Mineral Technology, National Nuclear Energy Agency, INDONESIA.
e-mail: sukadana@batan.go.id

Abstract
Mamuju Region recently has become one of radioactive minerals prospecting area in Indonesia. High radiometric concentration of uranium and thorium in Mamuju are distributed in basaltic to intermediate rocks (foidite to andesite) of Adang Volcanic. Radioactive minerals (uranium and thorium) occurrences were detected by using gamma spectrometer (model RS-125). The field measurements of RS-125 resulted dose rate, uranium and thorium equivalent (eU and eTh) contents of rock and soil. West Tapalang Area, part of Mamuju Region dominantly composed by lava and autobrecciaphonolite rocks. There are three volcanic domes identified in the area. They are Ahu, Labuhan Rano, and Sumare domes. Ahu dome is the biggest domes and characterized by the occurrences of leucite rich lava rocks. Some of the lava around the volcanic neck were formed in pillow lava structure shape. The other domes were composed by autobreccia rocks. Meanwhile, sedimentary rocks (limestones) were distributed in the southern part of the area and some of them were silicified. Based on measurements result, lava and autobreccia phonolite rocks as product of sub marine volcanic are the most radioactive rocks in this area. Keywords: submarine volcanic, radioactive minerals, alkaline rocks, West Tapalang

Introduction
Mamuju is the capital city of West Sulawesi Province, has high radiation dose rate due to its Naturally Occurring Radioactive Material (NORM), has been identified in the area of Adang Volcanic formation (Syeufil et al. 2014). The formation of Adang volcanic composed by feldsphtoid lava rock, pyroclastic, tuffities, and granite (Sukadana, et al. 2015). Usually volcanic products are representative of orogenetic magmas emplaced in a subduction context, with metasomatized mantle sources conforming to those of converging continental margin basalt (Conte et al. 2016). Parental magmas having small differences in major element compositions and common orogenic signatures (a spectrum of basalt straddling the subalkaline–alkaline boundary), differentiation processes gave rise to distinct evolved rocks characterized by diverse phases relationship and relative proportions which, in turn, produced different trace element distribution patterns in the more evolved rocks (Cadoux et al. 2005). Volcanic edifice, the morphology, characteristics and petrochemical composition of volcanic outcrops recognized in the submarine portions allowed to enlarge the knowledge on the development of the volcanic activity in the area. The submarine flanks of volcano are largely dominated (i.e. 80% of its areal) by erosive-depositional and mass-wasting features, ranging at different scale (Romagnoli et al. 2013). West Tapalang has feature of volcanic dome in some different area, and indicating the sub-marine volcanic products. Distribution of high radiation in this area are controled by volcanic rocks distributions (Indrastomo et al. 2016). Field survey, and laboratory analysis of some sample from West tapalang was conducted to identify the source of high radioactivity.

Data and Method
Analysis of landsat conducted to recognaized the shape of volcano arround West Tapalang. Data collection condusting by field measurements using RS-125 resulted dose rate, uranium and thorium equivalent (eU and eTh) contents of rock and soil. Laboratpry analysis conducted by petrographic and geochemistry analysis. The radiation dose rate in this area is ranging from 138 – 4,982 nSv/h, while composition of eU and eTh are ranging from 0 – 556 ppm, 25 – 586 ppm respectively. The distributions of high radiometric values are controlled by the distribution of volcanic rocks in this area. In several places the volcanics rocks was covered by Miocene limestone.

Result and Discussion
Geologically rocks are dominated type of basaltic-andesitic, basaltic-trachyandesite, phonolite, trachiandiesite, phonolite, phonotephrite, tephriphonolite, andecite, until trachyte-trachiandiesite. In addition, the separation between the rocks that are shosonitic with rocks that are high-K Calc Alkaline to know the evolution of volcanic rocks in West Tapalang area. Adang volcanic rock is the result of a complex process of volcanic volcanism which has a volcanic center and several lava domes. These volcanic rocks are composed of pnonolite to dacite rock, with ultrapotassic affinity, formed in active continental margin (ACM) (Sukadana et al. 2015). The andesites reported in this study represent the large crystal of leucite minerals. From the petrographic point of view they are not homogeneous and Mamuju volcanic rocks in the area formed by repeated process of magmatism and the radioactive mineral occurrences in the area affected by the distribution of ultrapotassic rocks, the occurrence of hydrothermal processes and occurrences geological structure. The variation of rocks affinity showed that volcanic rocks in this area has multiple stage of differentiation from parental magma. The petrographic-
geochemical characterization of submarine rocks sampled in the area surrounding the West Tapalang area constraints on the Miocene age, distribution and composition of volcanic edifice showed the volcanic in West Tapalang formed as the sub-marine volcanic rocks.

Table 1. Geochemistry analysis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Komp.</th>
<th>MJU 4</th>
<th>MJU 27</th>
<th>MJU 38A</th>
<th>MJU 51</th>
<th>MJU 331</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tplg</td>
<td>Tplg</td>
<td>Tplg</td>
<td>Tplg</td>
<td>Tplg</td>
</tr>
<tr>
<td>Satuan</td>
<td></td>
<td>(Wt. %)</td>
<td>(Wt. %)</td>
<td>(Wt. %)</td>
<td>(Wt. %)</td>
<td>(Wt. %)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>51.56</td>
<td>52.62</td>
<td>52.43</td>
<td>51.28</td>
<td>51.49</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.565</td>
<td>2.483</td>
<td>1.122</td>
<td>2.039</td>
<td>1.426</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.4</td>
<td>12.78</td>
<td>23.33</td>
<td>16.86</td>
<td>12.74</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>12.87</td>
<td>15.58</td>
<td>8.885</td>
<td>15.23</td>
<td>10.66</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.117</td>
<td>0.1874</td>
<td>0.1087</td>
<td>0.2974</td>
<td>0.2397</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>11.35</td>
<td>3.147</td>
<td>1.97</td>
<td>4.49</td>
<td>3.519</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.499</td>
<td>2.799</td>
<td>3.705</td>
<td>0.5494</td>
<td>7.429</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.11</td>
<td>6.26</td>
<td>6.99</td>
<td>3.76</td>
<td>2.323</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.539</td>
<td>2.906</td>
<td>1.777</td>
<td>3.746</td>
<td>8.713</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.144</td>
<td>0.165</td>
<td>0.5585</td>
<td>0.379</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>101.15</td>
<td>98.93</td>
<td>100.87</td>
<td>98.63</td>
<td>99.87</td>
<td></td>
</tr>
<tr>
<td>Satuan</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>445.4</td>
<td>303.5</td>
<td>71.4</td>
<td>53.8</td>
<td>240.9</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>101.3</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>87</td>
<td>115</td>
<td>24</td>
<td>86</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>269.1</td>
<td>45.9</td>
<td>126.6</td>
<td>210.1</td>
<td>136.6</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>180.8</td>
<td>126.6</td>
<td>109.7</td>
<td>296.2</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>11.3</td>
<td>27.7</td>
<td>21</td>
<td>27.8</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>362</td>
<td>770.3</td>
<td>5287</td>
<td>772.5</td>
<td>579.1</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>946.1</td>
<td>844</td>
<td>812.4</td>
<td>356.1</td>
<td>1512</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>86.6</td>
<td>146.9</td>
<td>193.9</td>
<td>150.2</td>
<td>65.1</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>1823</td>
<td>3325</td>
<td>834.3</td>
<td>2465</td>
<td>899.5</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>108.3</td>
<td>210.5</td>
<td>50.9</td>
<td>199.7</td>
<td>65.5</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>6591</td>
<td>6608</td>
<td>8891</td>
<td>30590</td>
<td>4525</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>362.5</td>
<td>399.6</td>
<td>382.4</td>
<td>339.6</td>
<td>276.1</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>706.9</td>
<td>774.9</td>
<td>378.9</td>
<td>547.4</td>
<td>510.1</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>98.8</td>
<td>124.2</td>
<td>148.9</td>
<td>< 5.1</td>
<td>200.5</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>66</td>
<td>83.9</td>
<td>71.3</td>
<td>41.2</td>
<td>41.6</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>364.1</td>
<td>234.2</td>
<td>190.6</td>
<td>380.8</td>
<td>162.6</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>330.5</td>
<td>482.9</td>
<td>214.8</td>
<td>360.1</td>
<td>161.3</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>745.8</td>
<td>38.7</td>
<td>37.2</td>
<td>63.5</td>
<td>51.3</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

West Tapalang has unique geological setting and variation of volcanics rocks. The circular shape of morphology, ash content and distribution of volcanic edifice showed the volcanic rocks are product of sub marine volcanic with alkaline affinity. The radioactive content of volcanics rocks are affected from magma differentiation.

References

Acknowledgements (Optional)

We are appreciated to centre for nuclear mineral technology, national atomic anergy agency, and college who assist data collection in the field.

Figure 2: Morphology, leneament and volcanic creater in West Tapalang, Mamuju.