PENGEMBANGAN FISIKA DAN KESELAMATAN OPERASI REAKTOR
PERANCANGAN DAN PEMBUATAN SEL BETON UNTUK PENYIMPANAN LESTARI LIMBAH SEMI CAIR (RESIN) RADIOAKTIF ASAL RSG-GAS

Pudjijanto MS, Bahadir Johan'

ABSTRAK

PERANCANGAN DAN PEMBUATAN SEL BETON UNTUK PENYIMPANAN LESTARI LIMBAH SEMI CAIR (RESIN) RADIOAKTIF ASAL RSG-GAS. Limbah semi cair atau kuasi padat di RSG-GAS dihasilkan dari penggunaan sistem pembilas resin dan sistem disposisi resin apabila mengganti resin trap insert. Volume limbah resin bebas dalam filter mixed-bed per operasi pembilasan berurut-turut adalah kira-kira: 1,00 m³ (dalam Sistem Pemurnian Air Pendingin Primer) dengan aktivitas \(\approx 18.6 \text{ Ci/m}^3 (0.688 \text{ TBq/m}^3) \), 0.50 m³ (dalam Sistem Pemurnian Air Kolom Penyimpan Radioisotop) dengan aktivitas \(\approx 0.162 \text{ Ci/m}^3 (5.99 \times 10^3 \text{ MBq/m}^3) \) dan 0,50 m³ (dalam Sistem Pemurnian Air Kolom Penyimpan Sementara Bahan Bakar) dengan aktivitas \(\approx 0.162 \text{ Ci/m}^3 (5.99 \times 10^3 \text{ MBq/m}^3) \). Pada saat pembongkaran, resin bebas yang dimuat ke dalam tangki penampung limbah resin bebas mempunyai tingkat konsentrasi radioaktivitas gross sebesar kira-kira 10 Ci/m³ (0,37 TBq/m³). Konsentrasi radioaktivitas dari limbah resin bebas setelah ditunda lebih dari 6 bulan adalah sekitar 0,32 Ci/m³ (11.84 GBq/m³). Berdasarkan data ini, telah dibuat sejumlah sel beton untuk menyimpan secara lestari limbah resin sebagai limbah semi cair (kuasi padat) yang secara kontinyu dihasilkan oleh instalasi RSG-GAS.

Kata kunci: inventori hasil belah; sinar-gamma; kuat sumber; kerne; fasilitas penanganan-bahan-bakar

ABSTRACT

DESIGN AND MANUFACTURING CONCRETE CELLS FOR SHIELDING AND STORING RADIOACTIVE SEMI LIQUID WASTE (RESIN) FROM MPR-GAS. Semi liquid or quasi solid waste from Multipurpose Reactor “G. A. Siwabessy” (MPR-GAS) produced from operating resin rinsing systems and resin disposal systems during changes insert trap resin. Volume of the disposal resin waste in the filter mixed-bed per operation rinsing period are approx. 1,00 m³ (in the Primary Cooling Water Treatment System) with activity \(\approx 18.6 \text{ Ci/m}^3 (0.688 \text{ TBq/m}^3) \), 0.50 m³ (in the Radioisotope Storage Pool Water Treatment System) with activity approx. \(\approx 0.162 \text{ Ci/m}^3 (5.99 \times 10^3 \text{ MBq/m}^3) \) and 0,50 m³ (in the Interim Spent Fuel Storage Pool Water Treatment System) with activity \(\approx 0.162 \text{ Ci/m}^3 (5.99 \times 10^3 \text{ MBq/m}^3) \) respectively. On the discharging and unloading, the gross radioactivity concentration of the resin waste loaded in the disposal resin waste tank are approx. 10 Ci/m³ (0,37 TBq/m³). After 6 months delayed, this activity is still 0,32 Ci/m³ (11.84 GBq/m³). Based on this data, some concrete cells to storage resin waste as semi liquid or quasi solid waste produced continuously by MPR-GAS installation has been designed and manufactured externally.

Key words: fission inventory, X-ray, source, kerne, fuel element handling facility

*) Pusat Pengembangan Pengelolaan Limbah Radioaktif (P2PLR), BATAN - Pusptek, Serpong

PENDAHULUAN

Sesuai dengan SK Dirjen Batan nomor: 127/DJ/XII/1986 tentang Organisasi dan Tata Kerja BATAN pasal 186 ayat (3), disebutkan bahwa P2TRR (dh. PRSG) mempunyai tugas mengoperasikan sistem bantu, bahan kimia, menangani limbah radioaktif di dalam instalasi reaktor, termasuk penggantian resin filter, yang secara operasional dilaksanakan oleh Sub Bidang Sistem Bantu di bawah Bidang Operasi Reaktor. Sementara itu, pasal ... ayat (...), menyebutkan bahwa P2PLR (dh. PTPLR) mempunyai tugas mengelola limbah radioaktif yang berasal dari instalasi nuklir di lingkungan BATAN termasuk limbah semi cair (kuasi padat) radioaktif berupa resin penukar ion bebas pakai yang berasal dari instalasi RSG-GAS.

Limbah semi cair atau kuasi padat berupa resin penukar ion di instalasi RSG-GAS akan dihasilkan dalam keadaan di bawah operasi normal oleh beberapa sistem, fasilitas dan atau komponen dari instalasi reaktor ini. Sistem, fasilitas dan atau komponen yang dapat memberi sumbangan pada
penghasilan limbah semi cair atau quasi padat berupa resin penukar ion antara lain adalah:

a. Sistem pemurnian air pendingin primer;
b. Sistem pemurnian air kolam penyimpan radioisotop;
c. Sistem pemurnian air kolam penyimpan sementara bahan bakar;

Pada sejumlah besar aktivitas limbah cair bentuk khusus ini, resin penukar ion yang dikeluarkan dari filter *mixed-bed* dari sistem pemurnian air pendingin primer, sistem pemurnian air kolam penyimpan radioisotop dan sistem pemurnian air kolam penyimpan bahan bakar di RSG-GAS dianggap dan ditangani sebagai limbah semi cair atau konsentrasi padat seperti halnya limbah cair dengan menggunakan sistem pembilasan resin dan sistem disposal resin limbah, yang terletak di ketinggian -9,50 m dari permukaan tanah tapak gedung RSG-GAS.

Limbah resin dihasilkan dalam hubungannya dengan penggunaan sistem pembilasan resin dan sistem disposal resin apabila mengganti resin *trap insert*.

Volume limbah resin bebas dalam filter *mixed-bed* per operasi pembilasan dari Sistem Pemurnian Air Pendingin Primer adalah kira-kira 1,00 m³ dan aktivitasnya adalah sekitar 18,6 Ci/m³ (0,668 TBq/m³).

Volume limbah resin bebas dalam filter *mixed-bed* per operasi pembilasan *Sistem Pemurnian Air Kolam Penyimpan Radioisotop* adalah kira-kira 0,50 m³ dan aktivitasnya adalah sekitar 0,162 Ci/m³ (≈ 5,99 × 10⁷ MBq/m³).

Volume limbah resin bebas dalam filter *mixed-bed* per operasi pembilasan dari Sistem Pemurnian Air Kolam Penyimpan Sementara Bahan Bakar adalah kira-kira 0,50 m³ dan aktivitasnya adalah sekitar 0,162 Ci/m³ (≈ 5,99 × 10⁷ MBq/m³).

Volume total limbah resin bebas dalam filter *mixed-bed* per operasi pembilasan dari ketiga sistem Pemurnian Air ini adalah kira-kira 2,00 m³ dan aktivitas totalnya adalah sekitar 18,924 Ci/m³ (≈ 1,980 × 10⁹ MBq/m³).

Ketiga sistem ini terdiri dari sebuah pompa pembilas, dua buah tangki penampung limbah bebas yang masing-masing berukuran 3 m³ dari resin yang dibuang, hubungan pipa-pipa penyulur dan instrumentasi serta koping untuk hubungan ke tangki pengangkut.

Pada saat pembongkaran, limbah resin bebas yang dimuat ke dalam tangki tampung sementara mempunyai tingkat konsentrasi radioaktivitas *gross* sebesar kira-kira 10 Ci/m³ (≈ 0,37 TBq/m³). Tingkat konsentrasi radioaktivitas dari limbah resin bebas setelah waktu penundaan selama 6 bulan adalah sekitar 0,32 Ci/m³ (≈ 11,84 GBq/m³). Harga ini tidak termasuk radionuklida S-35.

Setelah waktu pehruan selama 6 bulan, tingkat konsentrasi aktivitas dari radionuklida S-35 tinggal kira-kira 3,8 Ci/m³ (≈ 0,14 TBq/m³).

Berdasarkan atas alasan ini, maka perlu dirancang dan sekaligus dibuat sejumlah sel beton untuk menyimpan secara lestari limbah resin radioaktif sebagai limbah semi cair (quasi padat) yang secara kontinyu dihasilkan oleh instalasi RSG-GAS.

TEORI

Blok beton pengungkung konsentrat limbah resin radioaktif asal RSG-GAS dapat dianggap sebagai sebuah sumber volume berbentuk tabung, berperisa sel beton yang juga berbentuk tabung dengan tebal *t = tₚₖₚₚₚ* (cm) dalam arah radial di sisi samping dan tebal *t = tₖₚₚₚₚₚ* (cm) dalam arah aksial di keduanya (atur atas dan dasar bawah tabung).

Sumber Tabung, dengan Perisai di Samping: Gambar 1 menyajikan persamaan untuk flus di dua tempat kedudukan (P₁ dan P₂) memancar dari sebuah sumber tabung dengan perisai berbentuk lengkung tabung sejarah dengan sumbu tabung. Prosedur untuk memperoleh flus adalah pertama untuk mendapatkan "jarak serapan diri", yang tak lain adalah jarak dari permukaan lengkung tabung terdekat ke sumber garis interior *S₁*, yang akan memberikan dosis yang sama. Kuat sumber total per satuan panjang untuk tabung dan garis adalah sama. Data dari Taylor dan Obenshain, yang dicocokan ulang kembali oleh Purcell untuk memperoleh hasil yang lebih akurat, disajikan dengan tiga kurva untuk mendapatkan "jarak serapan diri".
Gambar 1. Sumber foton gamma volumetrik silindrik dengan perisai di sisi samping.

Gambar 5, dan selesaikan untuk t_e.

Fluks foton gamma tanpa tumbukan (belum dikenakan faktor bangkit B) di titik P manapun (baik P_1 atau P_2) di sisi samping luar perisai yang berasal dari kedalaman radial t_c dari permukaan blok sumber volume berjari R_o dalam perisai tabung setebal t, dapat ditentukan dengan formulasi sbb.:

$$
\phi_p = \frac{S_{V} \cdot R_o^2}{4 \cdot (R + t_e)} \times [F(\theta_2, \mu \cdot t + \mu \cdot t_e) - F(\theta_1, \mu \cdot t + \mu \cdot t_e)]
$$

(1)

Gambar 2. Sumber foton gamma volumetrik silindrik dengan tutup perisai di ujung atas.

Fluks foton gamma tanpa tumbukan (belum dikenakan faktor bangkit B) di titik P sepanjang sumber tabung pada jarak \(D = (R - t) \) di ujung atas luar perisai yang berasal dari blok sumber volume berdiameter \(R_o \) setinggi \(H_L \) di bawah tutup perisai tabung sebelah \(t \), dapat ditentukan dengan formulasi sbb:

\[
\phi_U = \frac{S_Y}{2 \cdot \mu_c} \left[E_2 (\mu \cdot t) \right. - E_2 \left(\mu \cdot t + \mu_c \cdot H_L \right) \left. + \sqrt{1 + \left(\frac{R_o}{R} \right)^2} \right. \left[E_2 \left(\mu \cdot t + \mu_c \cdot H_L \right) \left. \cdot \left(1 + \left(\frac{R_o}{R} \right)^2 \right)^2 \right] \right] \frac{E_2 (\mu \cdot t)}{1 + \left(\frac{R_o}{R} \right)^2} \frac{E_2 (\mu \cdot t + \mu_c \cdot H_L)}{1 + \left(\frac{R_o}{R} \right)^2} (2)
\]

Faktor Bangkit Dosis (B): Setiap piranti ukur (surveimeter) yang khusus digunakan untuk mendeteksi sinar gamma dan pengukuran di berbagai lokasi ukur dengan sejumlah perisai yang terletak di antara sumber dan piranti ukur itu, tanggapan (respons) sesungguhnya diperhitungkan sebagai hasil dari seluruh sinar gamma yang terdeteksi, dan tanggapan idealnya adalah hanya sebagai hasil dari sinar gamma primer atau sinar gamma tanpa tumbukan saja. Nisbah (nilai banding) dari dua tanggap ini (tanggap sesungguhnya per tanggap ideal) adalah lazim disebut sebagai faktor bangkit dosis yang menyusun pada piranti ukur yang digunakan dan pada tempat serta jumlah atau tebalnya perisai.

Laju dosis total \(\dot{D}(R) \), meliputi faktor bangkit, diberikan oleh pernyataan:

\[
\dot{D}(R) = 5,76756 \times 10^{-5} \left(\frac{1}{\rho} \right) E_o \phi_o (R, t) B(E_o, \mu t), \text{ dalam rad/jam, (3)}
\]
dimana:

\[E_0 = \text{tenaga foton gamma dari sumber}, \quad \text{MeV}; \]

\[(\mu/p) = \text{koefisien pelemahan massa serapan tebaga untuk bahan dalam mana dosis dihitung, cm}^2/\text{gram}; \]

\[\phi_0(R,t) = \text{flus foton gamma tanpa tumbukan terhitung, foton/cm}^2/\text{detik}; \]

\[B(E_0,\mu,t) = \text{faktor bangkit dosis untuk tenaga foton gamma awal yang diberikan} \]

\[\mu_\alpha t = \text{dan tebal serapan} \mu_\alpha \text{untuk bahan serapan yang diberikan.} \]

Dua macam faktor bangkit dosis yang dikenal, yaitu: 1> Faktor bangkit dosis untuk sumber "titik-isotropis" dan 2> Faktor bangkit dosis untuk sumber "bidang-terkolimasi". Jika sumber dipancang dalam atau didekatan tiba-tiba pada perisai, maka faktor bangkit "titik-isotropis" digunakan. Jika sebuah sumber kecil (dalam dimensi linier) adalah jauh dari perisai, sedemikian sehingga radiasinya terkolimasi secara dekat, maka digunakan faktor bangkit "bidang-terkolimasi".

Dalam kasus serapan membesar atau suatu permukaan besar dekat perisai tetapi tidak terletak pada sana, maka integrasi atas seluruh permukaan harus dibuat.

Parameter Serapan-Diri untuk Geometri

Tabung: Beberapa grafik yang diambil dari acuan 4, dikonversi ke tabel atau polinomial untuk penggunaan dalam program, Kurva dalam Gambar 3, yang memberikan eksponen serapan diri silinder \(\mu_\alpha R_0 \), sebagai fungsi dari \(\mu_\alpha R_0 \) untuk \(R/R_0 \geq 10 \), didasarkan dengan polinomial sbb.:

\[
\mu_\alpha t = 7.794289 \times 10^{-4} x^3 - 3.3071095 \times 10^{-2} x^2 + 5.6308275 \times 10^{-1} x + 3.4685315 \times 10^{-2}, \quad (4)
\]

dimana: \(x = \mu_\alpha R_0 \)

Gambar 3. Liku eksponen serapan diri untuk silinder sebagai fungsi dari \(\mu_\alpha R_0 \) untuk \(R/R_0 > 10 \), seperti dirumuskan oleh persamaan (4).
Gambar 4. Eksponen serapan diri untuk silinder μf_c dibagi dengan parameter m sebagai fungsi dari panjang relaksasi μt, untuk nisbah $R/R_o < 10$.

Gambar 5. Parameter serapan diri untuk silinder m sebagai fungsi dari R/R_o, untuk berbagai harga dari $\mu_0(R + R_o)$.
Dalam kasus itu, dimana \(R/R_o \geq 10 \), ini menjadi perlu untuk menggunakan Gambar 4 dan 5 untuk mendapatkan eksponen serapan dari silinder \(\mu c t \). Dalam kasus ini, \(\mu c t/m \) diperoleh dari Gambar 4, \(m \) didapat dari Gambar 5, dan selesaikan untuk \(t \).

Dalam beberapa kasus, terutama kasus yang menyangkut intensitas permukaan, ini diperlukan untuk mensortir ulang pada faktor koreksi serapan diri yang diperoleh dengan cara yang berbeda dari

\[
F_\phi (x) = \frac{\Gamma (\rho + 1)}{\Gamma (\frac{3}{2}) \cdot \Gamma (\rho + \frac{1}{2})} \int_0^\pi e^{-2x \cos \theta} \sin^2 \phi \, d\theta,
\]

dimana:

\(\rho = 1 \), untuk sumber silindrik atau tabung;
\(X = \mu R_o \);
\(\mu = \) koefisien serapan linier
\(R_o = \) jejeri silinder atau bola atau setengah tebal slab.

TATA KERJA

Pengelolaan limbah resin radioaktif semi cair asal RSG-GAS ini dilakukan dengan proses reduksi volume secara evaporasi di Instalasi Pengelolaan Limbah Radioaktif – Pusat Pengembangan Pengelolaan Limbah Radioaktif (P2PLR, BATAN – Serpong), dilanjutkan dengan pengungkungan (imobilisasi) unsur radioaktif yang terkandung di dalamnya dengan menggunakan bahan pengembang (matriks) yang sesuai. Konsentrasi yang timbul dari hasil evaporasi dikungkung menggunakan matriks semapabila telah memenuhi syarat ekstrak kering 250 gram/liter dengan aktivitas spesifik ≤ 1 Ci/m³, p. H sekitar 7 (normal, tidak asam tidak basa) serta tidak mengandung penemar alpha. Pengungkungan ini dimaksud agar konsentrat tersebut menjadi berbentuk sebagai padatan yang lebih mantap (stabil) siat-siat baik fisika maupun kimia, lebih kompak dan lebih mudah ditangani dibandingkan jika dalam bentuk cair atau semi cair serta lebih tahan terhadap pelindian sehingga memudahkan dalam proses penyimpanan lestari.

Kelemahan dalam penggunaan bahan semen sebagai bahan matriks pengungkungan kadang kala menimbulkan masalah retakan (swelling) yang berakibat menurunkan kuat tekan dan meningkatkan laju lindi. Untuk mencegah dan menganalisis kelemahan ini, telah dilakukan penelitian awal yang menghasilkan nisbah (nilai banding) air dan semen: \(A/S = 0,35 \) dan nisbah pasir dan semen \(P/S = 0,75 \).

Sebagai alternatif I, semen yang digunakan pada proses pengungkungan konsentrat resin adalah semen tipe I dan sebagai alternatif II digunakan semen cap Tiga Roda dengan komposisi senyawa kimia masing-masing seperti tertera pada Tabel 1 dan 2. Sementara itu, pasir yang digunakan adalah pasir Kali Cisadane dengan komposisi senyawa kimia seperti tertera pada Tabel 3.

Tabel 1. Komposisi senyawa kimia dari kandungan semen tipe I (dalam persen berat) yang digunakan sebagai bahan matriks pada konsentrat limbah resin radioaktif asal RSG-GAS.

<table>
<thead>
<tr>
<th>Nama senyawa kimia</th>
<th>Rumus kimia</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Trikalsium silikat</td>
<td>((C_3S)\cdot3\ CaOSiO_2)</td>
<td>50 %</td>
</tr>
<tr>
<td>2. Dicalcium silikat</td>
<td>((C_2S)\cdot2\ CaO\ SiO_2)</td>
<td>24 %</td>
</tr>
<tr>
<td>3. Trikalsium aluminat</td>
<td>((C_3Al)\cdot3\ CaOAl_2O_3)</td>
<td>11 %</td>
</tr>
<tr>
<td>4. Tetrakalsium aluminat</td>
<td>((C_4Al)\cdot4\ CaOAl_2O_3)</td>
<td>8 %</td>
</tr>
<tr>
<td>5. Kandungan lain</td>
<td>Tak terdeskripsi</td>
<td>7 %</td>
</tr>
</tbody>
</table>

Total | 100 %
Tabel 2. Komposisi senyawa kimia dari kandungan semen cap "Tiga Roda" (dalam persen berat) yang digunakan sebagai bahan matriks pada konsentrat limbah resin radioaktif asal RSG-GAS.

<table>
<thead>
<tr>
<th>Nama senyawa kimia</th>
<th>Rumus kimia</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Silikon oksida</td>
<td>SiO₂</td>
<td>20,72 %</td>
</tr>
<tr>
<td>2. Feri oksida</td>
<td>Fe₂O₃</td>
<td>3,17 %</td>
</tr>
<tr>
<td>3. Aluminium oksida</td>
<td>Al₂O₃</td>
<td>6,48 %</td>
</tr>
<tr>
<td>4. Kalsium oksida</td>
<td>CaO</td>
<td>64,28 %</td>
</tr>
<tr>
<td>5. Magnesium Oksida</td>
<td>MgO</td>
<td>2,02 %</td>
</tr>
<tr>
<td>6. Sulfur oksida</td>
<td>SO₂</td>
<td>2,32 %</td>
</tr>
<tr>
<td>7. Sodium oksida</td>
<td>Na₂O</td>
<td>0,19 %</td>
</tr>
<tr>
<td>8. Bahan tak larut</td>
<td>-</td>
<td>0,21 %</td>
</tr>
<tr>
<td>9. Bahan hilang karena pembakaran (pengapian)</td>
<td></td>
<td>0,63 %</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100,00 %</td>
</tr>
</tbody>
</table>

Tabel 3. Komposisi senyawa kimia dari kandungan pasir Kali Cisadane (dalam persen berat) yang digunakan sebagai bahan matriks pada konsentrat limbah resin radioaktif asal RSG-GAS.

<table>
<thead>
<tr>
<th>Nama senyawa kimia</th>
<th>Rumus kimia</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Silikon oksida</td>
<td>SiO₂</td>
<td>78,1 %</td>
</tr>
<tr>
<td>2. Aluminium oksida</td>
<td>Al₂O₃</td>
<td>6,5 %</td>
</tr>
<tr>
<td>3. Feri oksida</td>
<td>Fe₂O₃</td>
<td>1,9 %</td>
</tr>
<tr>
<td>4. Kalsium kaarbonat</td>
<td>CaCO₃</td>
<td>2,8 %</td>
</tr>
<tr>
<td>5. Sodium oksida</td>
<td>Na₂O</td>
<td>2,3 %</td>
</tr>
<tr>
<td>6. Potasium oksida</td>
<td>K₂O</td>
<td>1,4 %</td>
</tr>
<tr>
<td>7. Air</td>
<td>H₂O</td>
<td>7,0 %</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100,0 %</td>
</tr>
</tbody>
</table>

Berdasarkan baku mutu yang ditetapkan oleh IAEA agar blok beton pengungkung konsentrat ini dapat disimpan lestari adalah sbb:
- rapat massa : \(\rho = 1,7 - 2,50 \text{ gram/cm}^3\) (beton ringan standar)
- kuat tekan : \(I' = 20,0 - 50,0 \text{ N/m}^2\)
- laju lindi : \(\text{Ru} = 1,7 \times 10^{-1} - 2,50 \times 10^{-4} \text{ gram/cm}^3/\text{hari}\)
- laju dosis kontak permukaan : \(D_{0c} < 200 \text{ mrem/jam}\)
- laju dosis pada jarak 1 meter : \(D_{1m} < 10 \text{ mrem/jam}\)

Konsentrat limbah resin radioaktif yang berasal dari RSG-GAS ini dikungkung menggunakan pengembang pasir dan semen di dalam sel beton yang kapasitasnya 950 liter. Konsentrasi dari pengungkung ini adalah sbb:
- Volume konsentrat : \(V = 235 \text{ liter (} M_4 = \pm 235 \text{ kg)}\)
- Pasir kali (Cisadane) : \(M_5 = 450 \text{ kg}\)
- Semen tipe I : \(M_4 = 600 \text{ kg}\)
- Air : \(M_4 = 210 \text{ kg}\)

Dengan berdasarkan pada rumusan teoritis dan data eksperimen di lapangan maka dapat dihitung tebal efektif dari sel beton pengungkung limbah konsentrat resin radioaktif asal RSG-GAS. Dari hasil perhitungan ini telah dibuat beberapa buah sel beton untuk keperluan tersebut.
HASIL DAN PEMBAHASAN

Berdasarkan argumen teori dan data pendukung baik fisika maupun teknis yang diperoleh baik dari perumusan literatur maupun langsung dari lapangan, telah didisain (dihitung) dan pada medio bulan Mei 2002 telah dibuat secara praktis sejumlah (tetapnya empat buah) sel perisai beton untuk menyimpan secara lestari limbah resin radioaktif sebagai limbah semi cair (quasi padat) asal RSG-GAS. Dimensi (ukuran) dari sel beton hasil disain dan hasil aplikasi manufakturing seperti dimaksud di atas, ditunjukkan dalam Tabel 4 dan dilukiskan seperti tampak pada Gambar 2. Hasil uji laboratorium terhadap ke empat sel beton berkapasitas 950 liter ini ditunjukkan pada Tabel 5.

Tabel 4. Dimensi standar sel beton untuk menyimpan secara lestari limbah resin radioaktif asal RSG-GAS.

<table>
<thead>
<tr>
<th>No.</th>
<th>Besaran teknis</th>
<th>Matra (ukuran), cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Sel beton</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Diameter luar</td>
<td>140</td>
</tr>
<tr>
<td>2.</td>
<td>Diameter mulut sel</td>
<td>117 - 120</td>
</tr>
<tr>
<td>3.</td>
<td>Diameter dalam</td>
<td>114</td>
</tr>
<tr>
<td>4.</td>
<td>Tinggi sel</td>
<td>$(104,5 + 7,5 + 18) = 130$</td>
</tr>
<tr>
<td>5.</td>
<td>Kedalaman</td>
<td>110</td>
</tr>
<tr>
<td>6.</td>
<td>Jarak ceruk</td>
<td>16 - 20</td>
</tr>
<tr>
<td>7.</td>
<td>Lebar ceruk</td>
<td>7,0 - 7,5</td>
</tr>
<tr>
<td>8.</td>
<td>Kedalaman pusat</td>
<td>3,0 - 3,5</td>
</tr>
<tr>
<td>9.</td>
<td>Lebar pusat</td>
<td>8,0 - 8,5</td>
</tr>
<tr>
<td>B.</td>
<td>Penutup (atas dan alas)</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Diameter besar</td>
<td>120</td>
</tr>
<tr>
<td>2.</td>
<td>Diameter kecil</td>
<td>117</td>
</tr>
<tr>
<td>3.</td>
<td>Tebal penutup atas</td>
<td>15 - 16</td>
</tr>
<tr>
<td>4.</td>
<td>Tebal dasar (alas) bawah</td>
<td>15 - 16</td>
</tr>
<tr>
<td>C.</td>
<td>Drum</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Diameter luar</td>
<td>106,5</td>
</tr>
<tr>
<td>2.</td>
<td>Tebal plat drum</td>
<td>2,5</td>
</tr>
<tr>
<td>3.</td>
<td>Tinggi</td>
<td>98</td>
</tr>
<tr>
<td>4.</td>
<td>Panjang pusat</td>
<td>1,5 - 3,5</td>
</tr>
<tr>
<td>5.</td>
<td>Diameter pusat</td>
<td>1,5 - 7,5</td>
</tr>
</tbody>
</table>

Tabel 5. Hasil uji densitas, kuat tekan dan laju laju lindi di laboratorium terhadap ke empat sel beton berkapasitas 950 liter.

<table>
<thead>
<tr>
<th>No. sel</th>
<th>Rapat massa, ρ, g/cm3</th>
<th>Kuat tekan, Γ, N/mm2</th>
<th>Laju lindi, Ru, (g/mm2/hari)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2,50</td>
<td>25,60</td>
<td>$1,4 \times 10^{-2} \sim 2,0 \times 10^{-4}$</td>
</tr>
<tr>
<td>II</td>
<td>2,48</td>
<td>26,00</td>
<td>$1,5 \times 10^{-2} \sim 1,9 \times 10^{-4}$</td>
</tr>
<tr>
<td>III</td>
<td>2,49</td>
<td>25,80</td>
<td>$1,4 \times 10^{-2} \sim 2,1 \times 10^{-4}$</td>
</tr>
<tr>
<td>IV</td>
<td>2,50</td>
<td>25,70</td>
<td>$1,4 \times 10^{-2} \sim 2,0 \times 10^{-4}$</td>
</tr>
</tbody>
</table>
Gambar 6. Sel beton bagian luar dan tutupnya, termasuk drum pelapis bagian dalam dengan kapasitas tampung 950 liter volume limbah resin dari RSG-GAS.

KESIMPULAN DAN SARAN

Dengan terdisainnya dan telah dibuatnya sel beton pengungkung konsentrat limbah resin semi cair radioaktif asal RSG-GAS ini maka masalah yang timbul akibat terproduksinya limbah tersebut kini sudah dapat diatasi.
DAFTAR PUSTAKA

Perancangan dan Pembuatan...

Pudijanto