ANALISIS EFEK PENGOTOR PADA BAHAN BAKAR SILISIDA TERAS RSG-GAS

Tukiran Surbakti

ABSTRAK

ANALISIS EFEK PENGOTOR PADA BAHAN BAKAR SILISIDA TERAS RSG-GAS. Telah dilakukan simulasi pengaruh bahan pengotor di dalam bahan baku silisida teras RSG-GAS. Tujuan penelitian ini untuk mengetahui pengaruh unsur pengotor U-234 dan U-236 di dalam bahan baku terhadap kritikalitas teras. Dalam simulasi ini digunakan bahan baku silisida mutan 250 gr dan pengkayaan 19,75 %. Konstanta kelompok elemen bakar dan bahan struktur teras dibangkitkan oleh program WIMSD/4, sedangkan konsentrasi pengotor diatur mulai dari 0,01 % hingga 2 %. Dari hasil yang diperoleh dapat disimpulkan bahwa unsur pengotor di dalam bahan baku sangat mengganggu dan dapat mengakibatkan reaktor tidak kritis setelah beroperasi setengah perjalanan siklusnya (350 MWD).

ABSTRACT

ANALYSIS OF IMPURITY EFFECT ON SILICIDE FUELS OF THE RSG-GAS CORE. Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 gU loading and 19.75% enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MWD).

PENDAHULUAN

Bahan bakar reaktor RSG-GAS menurut desain adalah uranium oksida dengan mutan dan pengkayaan masing-masing adalah 250 gr dan 19,75 %. Namun saat ini bahan bakar RSG-GAS telah berubah menjadi uranium silisida dengan mutan dan pengkayaan yang sama.

Dalam pembuatan (fabrikasi) elemen bakar reaktor RSG-GAS (uranium silisida) tanpa sengaja terikut unsur yang tidak diharapkan (pengotor) seperti U-234 dan U-236. Unsur ini sangat mengganggu dan akan mempengaruhi keaktifitas teras selama reaktor dioperasikan pada daya tertentu sehingga perlu dianalisis efek pengotor tersebut di dalam bahan bakar terhadap kritikalitas reaktor. ASTM (American Standard for Testing Material) tahun 1998 pada bagian C 1462-00 memberikan persyaratan untuk pembuatan setiap bahan bakar uranium metal mengandung U-234 tidak lebih 1 % dan U-236 tidak lebih 4 %.

Analisis dilakukan dengan metode perhitungan dengan menggunakan program komputer WIMSD-4 dan Batan-2DIFF. Perhitungan sel dilakukan dengan program WIMSD-4 sedangkan perhitungan terasnya dilakukan dengan program difusi Batan-2DIFF dalam geometri reaktor x-y, 2-D yang digunakan untuk menghitung faktor multiplikasi efektif. Untuk perhitungan senja dianggap bahwa seluruh bahan bakar uranium silisida mengandung U-234 sebesar 0,1 -1,4 %. Kemudian digenerasi lagi sel bahan bakarnya dengan menggandap bahan bakar uranium silisida mengandung U-236 sebesar 0,1 - 4,5 %. Dari hasil perhitungan generasi sel kedua model bahan bakar ini dilakukan perhitungan teras silisida RSG-GAS. Kemudian dianalisis seberapa besar pengaruhnya terhadap kritikalitas reaktor dengan Batan-2DIFF.

MODEL PERHITUNGAN NEUTRONIK

Model perhitungan neutronik dalam analisis ini terdiri dari dua bagian yaitu perhitungan generasi tampang lintang yang dilakukan dengan menggunakan program WIMSD/4 yang menggunakan metode Sn dan perhitungan kritikalitas dengan Batan-2DIFF.

Generasi Tampang Lintang

Analisis pengaruh bahan pengotor pada bahan bakar silisida pada teras RSG-GAS dilakukan dengan program perhitungan sel
WIMSD/4. Perhitungan sel WIMSD/4 digunakan untuk membangkitkan tampilan lintang makroskopik. Geometri elemen bahan bakar 3-D yang sesungguhnya harus didekati dengan sel ekuivalen 1-D. Untuk arah aksial bahan bakar dan komposisi material hampir seragam, karena itu ke arah ini dapat diabaikan. Dengan mengamati gambar tampilan lintang bahan bakar (Gambar 1) maka arah transversal dari bahan bakar harus dipilih untuk model sel ekuivalen 1-D. Bagian lain dari bahan bakar seperti pelat sisi yang tidak termasuk dalam model sel ekuivalen 1-D dimasukkan dalam perhitungan ekstra region, yaitu opsi yang diberikan program WIMDS/4. Opsi koreksi buckling juga diaktifkan dalam perhitungan sel untuk pendekatan spektrum teras yang sesungguhnya yang digunakan dalam kondensasi. Interval waktu diatur sedemikian rupa sehingga kelas fraksi bakar dapat dicapai. Adapun fraksi bakar bahan bakar silisida yang digunakan diklasifikasikan ke dalam 17 kelas. Sehingga untuk menentukan fraksi bakar yang sesungguhnya dapat digunakan dengan interpolasi.

Model perhitungan untuk bahan bakar adalah multi slab. Pada pemodelan ini satu elemen bakar yang terdiri dari 21 pelat dibuat menjadi 21 slab material yang tersusun secara berurutan (Gambar 2). Setiap slab terdiri dari material, kelongsong, dan moderator yang tebalnya masing-masing: 0,027 cm, 0,038 cm, dan 0,1925 cm. Slab ini sesuai dengan panjang material aktif. Material lain yang dibahar panjang katif dihomogenisasi dan dinormalisir terhadap panjang aktif dan dinamakan ekstra region. Pada elemen bakar ekstra region terdiri dari bahan AlMg2 dan air, sedangkan meat terdiri dari U-235 dan U-238 ditambah unsur pengotor, kelongsong terdiri dari AlMg2 dan moderator terdiri dari air ringan.

Untuk bahan bahan non-fusi, dimodelkan sama seperti bahan fusi dimana pada slab aktif diberi sedikit kandungan U-235, kemudian dilakukan homogenisasi di senua daerah.

Perhitungan Kritikalitas

Teras kerja RSG-GAS mempunyai 40 bahan bakar dan 8 elemen kendali. Konfigurasi teras kerja dapat dilihat pada Gambar 1 dan parameternya Tabel 1. Perhitungan kritikalitas teras kerja RSG-GAS dilakukan dengan program diffusi Batan-2DIFF dalam geometri x-y, 2D. Program Batan-2DIFF menyelakai nilai pribadi dari diffusi neutron multi kelompok,

\[M \Phi = \frac{1}{k_{eff}} F \Phi \]

(1)

dimana M dan F adalah masing-masing menyatakan operator migrasi dan kehilangan neutron dan operator sumber fisii,

\[M \Phi = -\nabla D_{g} (r) \nabla \phi_{g} (r) + \sum_{s,g} (r) \phi_{g} (r) - \sum_{s,g} a_{g} \phi_{g} (r) \]

(2)

\[F \Phi = \chi_{g} \sum_{g=1}^{G} \omega \Sigma f_{g} (r) \phi_{g} (r) \]

(3)

dimana:
- \(g = 1,2,3 \ldots \), G, jumlah kelompok energi
- \(r \) = posisi
- \(\phi_{g} \) = flukus neutron di kelompok ke-g
- \(D_{g} \) = konstanta difusi kelompok ke-g
- \(\Sigma_{c,g} \) = tampilan lintang transport kelompok ke-g
- \(\Sigma_{x,g} \) = tampilan lintang sumber fisii dari kelompok ke-g
- \(\Sigma_{s,g} \) = tampilan lintang total kelompok ke-g
- \(\Sigma_{a,g} \) = tampilan lintang penyerapan kelompok ke-g
- \(\Sigma_{e,g} \) = tampilan lintang hamburan dari g' ke g
- \(\chi_{g} \) = fraksi sumber fisii di kelompok ke-g

Reaktivitas teras didefinisikan dengan persamaan,

\[\rho = \frac{k_{eff} - 1}{k_{eff}} \times 100 \% \Delta k/k \]

(4)

Sedangkan perubahan reaktivitas dihitung dengan persamaan,

\[\Delta \rho = \frac{k_{eff} - k_{eff} 1}{k_{eff} 1 \times k_{eff} 2} \times 100 \% \Delta k/k \]

(5)

dimana,
- \(k_{eff} \) = reaktivitas teras tanpa adanya unsur pengotor
- \(k_{eff} 1 \) = reaktivitas teras dengan adanya unsur pengotor

Dalam perhitungan teras, buckling aksial yang digunakan untuk melakukan simulasi kebocoran neutron dalam arah aksial yang diperoleh dari perhitungan IAFUEL.
Gambar 1. Elemen bakar standar RSG-GAS (satuan mm)

- Aextra region = 11,93725 cm²
- Lextra region = 0,933618 cm
- AAIMg₂ = 8,43255 cm²
- % AlMg₂ = 0,7064
- % H₂O = 0,2936

Gambar 2. Pemodelan bahan bakar
BERYLLIUM BLOCK REFLECTOR

Gambar 3. Konfigurasi keras kerja RSG-GAS

Keterangan:
Tabel 1. Data desain Teras kerja RSG-GAS

<table>
<thead>
<tr>
<th>Umum</th>
<th>Tipe kolam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe Reaktor</td>
<td>Silisida pengkayaan rendah</td>
</tr>
<tr>
<td>Tipe elemen bakar</td>
<td>Konveksi paksa</td>
</tr>
<tr>
<td>Sistem pendinginan</td>
<td>H₂O</td>
</tr>
<tr>
<td>Moderator/pendingin</td>
<td>Be & H₂O</td>
</tr>
<tr>
<td>Reflector</td>
<td>30</td>
</tr>
<tr>
<td>Daya nominal (MW)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Karakteristik teras</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah elemen bakar</td>
<td>40</td>
</tr>
<tr>
<td>Jumlah elemen kendali</td>
<td>8</td>
</tr>
<tr>
<td>Jumlah penyerap tipe garpu (pasang)</td>
<td>8</td>
</tr>
<tr>
<td>Panjang siklus pada daya nominal (hari)</td>
<td>25</td>
</tr>
<tr>
<td>Fraksi bakar rerata awal siklus (% hilangnya²³⁵U)</td>
<td>23.3</td>
</tr>
<tr>
<td>Fraksi bakar rerata akhir siklus (% hilangnya²³⁵U)</td>
<td>31.3</td>
</tr>
<tr>
<td>Fraksi bakar rerata pada akhir siklus (% hilangnya²³⁵U)</td>
<td>53.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel/Control Elements</th>
<th>Dimensi elemen bakar/kendali (mm) 77.1x81x600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketebalan pelat bakar (mm)</td>
<td>1.3</td>
</tr>
<tr>
<td>Lebar kanal pendingin (mm)</td>
<td>2.55</td>
</tr>
<tr>
<td>Jumlah pelat per elemen bakar</td>
<td>21</td>
</tr>
<tr>
<td>Jumlah pelat per elemen kendali</td>
<td>15</td>
</tr>
<tr>
<td>Material kelongsong bahan bakar</td>
<td>AlMg₂</td>
</tr>
<tr>
<td>Ketebalan kelongsong bshn bakar (mm)</td>
<td>0.38</td>
</tr>
<tr>
<td>Dimensi Fuel Meat (mm)</td>
<td>0.54x62.75x600</td>
</tr>
<tr>
<td>Material Fuel Meat</td>
<td>U₃Si₄Al</td>
</tr>
<tr>
<td>Pengkayaan U-235 (w/o)</td>
<td>19.75</td>
</tr>
<tr>
<td>Densitas Uranium dalam Metal (g/cm³)</td>
<td>2.96</td>
</tr>
<tr>
<td>Muatan U-235 per elemen bakar (g)</td>
<td>250</td>
</tr>
<tr>
<td>Muatan U-235 per elemen kendali (g)</td>
<td>178.6</td>
</tr>
<tr>
<td>Material penyerap</td>
<td>Ag-In-Cd</td>
</tr>
<tr>
<td>Ketebalan bahan penyerap (mm)</td>
<td>3.38</td>
</tr>
<tr>
<td>Material kelongsong penyerap (mm)</td>
<td>SS-321</td>
</tr>
<tr>
<td>Ketebalan kelongsong penyerap (mm)</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Tabel 2. Model bahan bakar Uranium Silisida mengandung U-234 dan U-236

<table>
<thead>
<tr>
<th>No.</th>
<th>U-234 (%)</th>
<th>U-234 (gr)</th>
<th>U-238 (%)</th>
<th>U-238 (gr)</th>
<th>U-236 (%)</th>
<th>U-236 (gr)</th>
<th>U-238 (%)</th>
<th>U-238 (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>6,01895E-6</td>
<td>6,01294E-3</td>
<td>0.1</td>
<td>6,01895E-6</td>
<td>6,01294E-3</td>
<td>0.1</td>
<td>6,01895E-6</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>1,20379E-5</td>
<td>6,00691E-3</td>
<td>0.2</td>
<td>3,00947E-5</td>
<td>5,98888E-3</td>
<td>0.2</td>
<td>3,00947E-5</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1,80569E-5</td>
<td>6,00089E-3</td>
<td>0.3</td>
<td>6,01895E-5</td>
<td>5,95876E-3</td>
<td>0.3</td>
<td>6,01895E-5</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>2,40758E-5</td>
<td>5,99487E-3</td>
<td>0.4</td>
<td>9,02842E-5</td>
<td>5,92867E-3</td>
<td>0.4</td>
<td>9,02842E-5</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>3,00947E-5</td>
<td>5,98886E-3</td>
<td>0.5</td>
<td>1,20379E-4</td>
<td>5,98857E-3</td>
<td>0.5</td>
<td>1,20379E-4</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>3,61137E-5</td>
<td>5,98284E-3</td>
<td>0.6</td>
<td>1,50474E-4</td>
<td>5,86848E-3</td>
<td>0.6</td>
<td>1,50474E-4</td>
</tr>
<tr>
<td>7</td>
<td>0.8</td>
<td>4,81516E-5</td>
<td>5,97079E-3</td>
<td>0.8</td>
<td>1,80568E-4</td>
<td>5,83838E-3</td>
<td>0.8</td>
<td>1,80568E-4</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>6,01895E-5</td>
<td>5,95876E-3</td>
<td>1.0</td>
<td>2,10665E-4</td>
<td>5,80829E-3</td>
<td>1.0</td>
<td>2,10665E-4</td>
</tr>
<tr>
<td>9</td>
<td>1.2</td>
<td>7,22274E-5</td>
<td>5,94672E-3</td>
<td>1.2</td>
<td>2,40758E-4</td>
<td>5,77819E-3</td>
<td>1.2</td>
<td>2,40758E-4</td>
</tr>
<tr>
<td>10</td>
<td>1.4</td>
<td>8,42653E-5</td>
<td>5,93468E-3</td>
<td>1.4</td>
<td>2,70853E-4</td>
<td>5,74809E-3</td>
<td>1.4</td>
<td>2,70853E-4</td>
</tr>
</tbody>
</table>
HASIL DAN PEMBAHASAN

1. HASIL

Pembagian kelompok energi neutron dalam perhitungan sel dapat dilihat pada Tabel 3.

Tabel 3. Kelompok Energi dalam Perhitungan Sel

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Range Energi</th>
<th>Kelompok WIMSD/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>821 keV < E < 10 MeV</td>
<td>1-5</td>
</tr>
<tr>
<td>2</td>
<td>5,531 keV < E < 821 keV</td>
<td>6-15</td>
</tr>
<tr>
<td>3</td>
<td>0,625 keV < E < 5,531 keV</td>
<td>16-45</td>
</tr>
<tr>
<td>4</td>
<td>0 < E < 0,625 keV</td>
<td>46-69</td>
</tr>
</tbody>
</table>

Pembagian kelompok energi neutron ini sudah lahir digunakan untuk perhitungan sel material reaktor dengan pendingin air ringan (LWR). Tabel 2 menunjukkan parameter desain bahan bakar silisida yang digunakan dalam analisis.

Gambar 4. Hubungan k,inf dengan fakisi bakar pada konsentrasi U-236 tertentu
Gambar 5. Hubungan k-inf dengan fraksi bakar pada konsentrasi U-234 tertentu

Tabel 4. Faktor multiplikasi dengan konsentrasi pengotor U-234

<table>
<thead>
<tr>
<th>Fraksi bakar</th>
<th>Pengotor U-234 0%</th>
<th>Pengotor U-234 2%</th>
<th>Pengotor U-234 5%</th>
<th>Pengotor U-234 8%</th>
<th>Pengotor U-234 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.592911</td>
<td>1.590108</td>
<td>1.586132</td>
<td>1.579692</td>
<td>1.575272</td>
</tr>
<tr>
<td>0.32</td>
<td>1.528222</td>
<td>1.525609</td>
<td>1.521908</td>
<td>1.515916</td>
<td>1.511820</td>
</tr>
<tr>
<td>2</td>
<td>1.521168</td>
<td>1.518576</td>
<td>1.514905</td>
<td>1.508965</td>
<td>1.504905</td>
</tr>
<tr>
<td>8</td>
<td>1.495229</td>
<td>1.492636</td>
<td>1.489014</td>
<td>1.483153</td>
<td>1.479146</td>
</tr>
<tr>
<td>34</td>
<td>1.474339</td>
<td>1.471644</td>
<td>1.468058</td>
<td>1.462255</td>
<td>1.458286</td>
</tr>
<tr>
<td>50</td>
<td>1.452594</td>
<td>1.449679</td>
<td>1.446132</td>
<td>1.440395</td>
<td>1.436467</td>
</tr>
<tr>
<td>66</td>
<td>1.429622</td>
<td>1.426344</td>
<td>1.422844</td>
<td>1.417184</td>
<td>1.413306</td>
</tr>
<tr>
<td>82</td>
<td>1.405319</td>
<td>1.401514</td>
<td>1.398066</td>
<td>1.392493</td>
<td>1.386673</td>
</tr>
<tr>
<td>98</td>
<td>1.379485</td>
<td>1.374963</td>
<td>1.371580</td>
<td>1.366112</td>
<td>1.362366</td>
</tr>
<tr>
<td>114</td>
<td>1.351917</td>
<td>1.346471</td>
<td>1.343164</td>
<td>1.337822</td>
<td>1.334165</td>
</tr>
<tr>
<td>130</td>
<td>1.322404</td>
<td>1.315800</td>
<td>1.312584</td>
<td>1.307394</td>
<td>1.303844</td>
</tr>
<tr>
<td>146</td>
<td>1.290684</td>
<td>1.282668</td>
<td>1.279564</td>
<td>1.274556</td>
<td>1.271136</td>
</tr>
<tr>
<td>162</td>
<td>1.256500</td>
<td>1.246803</td>
<td>1.243831</td>
<td>1.239042</td>
<td>1.235778</td>
</tr>
<tr>
<td>178</td>
<td>1.219367</td>
<td>1.207718</td>
<td>1.204910</td>
<td>1.200392</td>
<td>1.197328</td>
</tr>
<tr>
<td>194</td>
<td>1.178782</td>
<td>1.164911</td>
<td>1.162306</td>
<td>1.158120</td>
<td>1.155501</td>
</tr>
<tr>
<td>212</td>
<td>1.128210</td>
<td>1.111545</td>
<td>1.109227</td>
<td>1.105511</td>
<td>1.103039</td>
</tr>
<tr>
<td>232</td>
<td>1.064667</td>
<td>1.044634</td>
<td>1.042726</td>
<td>1.039684</td>
<td>1.037713</td>
</tr>
</tbody>
</table>

Tabel 5. Faktor multiplikasi dengan konsentrasi pengotor U-236

<table>
<thead>
<tr>
<th>Fraksi bakar</th>
<th>Pengotor U-236 0 %</th>
<th>Pengotor U-236 0.5 %</th>
<th>Pengotor U-236 2%</th>
<th>Pengotor U-236 3.5%</th>
<th>Pengotor U-236 4.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.592911</td>
<td>1.591247</td>
<td>1.586755</td>
<td>1.583381</td>
<td>1.581248</td>
</tr>
<tr>
<td>0.32</td>
<td>1.528222</td>
<td>1.526636</td>
<td>1.522356</td>
<td>1.519146</td>
<td>1.517117</td>
</tr>
<tr>
<td>2</td>
<td>1.521168</td>
<td>1.519594</td>
<td>1.515357</td>
<td>1.512168</td>
<td>1.510151</td>
</tr>
</tbody>
</table>

Bersambung
Dengan menggunakan konstana kelumpok dari WIMS dihitung pengaruh reaktivitas teras akibat adanya isotop pengotor. Teras reaktor RSG-GAS dengan bahan bakar uraniu silisida tipe plat dan pengayaan 19,75 % mempunyai kemungkinan dalam fabrikasinya mengandung isotop pengotor. Isotop pengotor yang dimaksud dalam hal ini adalah U-234 dan U-236. Dalam spesifikasi bahan bakar tidak pernah dicantumkan berapa batus kadar isotop pengotor tersebut yang dijinkan yang terbawa dalam uraniu sebagai bahan bakar nuklir. Dengan adanya isotop pengotor di dalam bahan bakar diduga akan menimbulkan pengaruh negatif terhadap reaktivitas teras. Hasil analisis dengan menggunakan paket program WIMS/4 dan BATAN-2DIFF menunjukkan bahwa kadar U-234 0,22 %dari U-236 0,1 % menyebabkan kerugian reaktivitas sebesar 0,30 % d/k sedangkan ASTM menetapkan bahwa kadar U-234 1 % dan U-236 4%, yang akan mengakibatkan kerugian reaktivikt sebesar 2,8 % d/k.

KESIMPULAN

Perhitungan faktor multiplikasi efektif dengan kombinasi program WIMSD-4 dengan Batan-2DIFF memberikan hasil yang cukup akurat. Semakin tinggi kandungan unsur pengotor di dalam bahan bakar menyebabkan semakin rendah reaktivitas teras. Unsur pengotor sangat menggangu terhadap kritikalitas teras reaktor sehingga perlu diperhatikan lebih serius lagi dalam pembuatan bahan bakar. Pemberian persyaratan jumlah kandungan maksimum unsur pengotor di dalam bahan bakar oleh ASTM sangat sesuai dengan teras RSG-GAS.

DAFTAR PUSTAKA

5. LILY SUPARLIINA dkk., “Pemanfaatan Interpolasi Linier pada Perhitungan Reaktivitas Batang Kendali”. Buletin PRSG Tri Dasa Mega Volume 3 No. 2 Juli 1994
6. LIEM PENG HONG., Depletion Analysis on The Control Rod Absorber of RSG-GAS Oxide and Silicide Fuel Cores., Atom Indonesia, vol 25, No 1 January 1999

Penanya : M. Imron

Pertanyaan :
Mohon perhitungan pak Tukiran direkomendasikan ke PT. Bantek

Jawaban :
Ya, saya rekomendasikan setelah selesai laporan prosiding