Contents

Editorial .................................................................................................................. i

Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System
L.P. Rodriguez, D. Milian, C.R. Garcia, D.E. Milian,
C.A. Brayner and M. Cadavid ................................................................. 53

A Paradigm Shift in Low Dose Radiation Biology (Review Article)
Z. Alatas ........................................................................................................ 61

Effect of Temperature and Mole Ratio on the Synthesis Yield of Rhenium-Tetrofosmin
Widyastuti and A.H. Gunawan ................................................................. 71

Bacterial Diversity in Buffalo Meat and Bowel from Traditional Market and the Sensitivity of Some
Bacteria to Irradiation and Antibiotics
Harsojo and S.Y. Sari .............................................................................. 79

Studies of Modification of Zeolite by Tandem
Acid-Base Treatments and its Adsorptions Performance Towards Thorium
G. Nurllati, Y.K. Krisnandi, R. Sihombing and Z. Salimin ......................... 87

Design and Development of Carborne Survey Equipment
Syarbaini, Bunawas and I.P. Susila ..................................................... 97

The Use of Sodium Hypochlorite Solution for (n,γ) ⁹⁹Mo/⁹⁹mTc Generator Based on
Zirconium-Based Material (ZBM)
I. Saptiama, Martina, E. Sarmini, Herlina, Sriyono, Abidin,
H. Setiawan, Kadarisman, H. Lubis and A. Mutalib ................................ 103

Acknowledgment ....................................................................................... 111
atom indonesia

Exist for publishing the results of research and development in nuclear science and technology

EDITOR IN CHIEF
Prof. Dr. rer. nat. Evvy Kartini

MANAGING EDITOR
Drs. Supria, M.Sc.

EDITORS
Prof. Dr. Zaki Su’ud
Prof. Dr. Terry Mart
Prof. Dr. Muhayatun Santosu
Dr. Hendig Winarno
Dr. Hadi Suwarno
Dr. Abu Khalid Rivai
Edy Giri R. Putra, Ph.D.
Prof. Dr. Malcolm F. Collins
Prof. Dr. Shane J. Kennedy
Prof. Dr. Philip K. Hopke
Prof. Dr. Takashi Sakuma
Sugawara Takanori, Ph.D.
Prof. Dr. G.P. Johari
Prof. Dr. T. Kamiyama
Prof. Dr. Shahidin Radiman
Prof. Dr. Kell Mortensen

Nuclear Physics and Reactor Safety, Bandung Institute of Technology, Indonesia
Theoretical Nuclear and Physics, University of Indonesia, Indonesia
Radiochemistry; Nuclear Analytical Techniques, National Nuclear Energy Agency, Indonesia
Radiation; Pharmaceutical Chemistry, National Nuclear Energy Agency, Indonesia
Nuclear Materials, National Nuclear Energy Agency, Indonesia
Materials; Corrosion and Nuclear Reactor Technology, National Nuclear Energy Agency, Indonesia
Neutron Scattering, Soft Condensed Matter, National Nuclear Energy Agency, Indonesia
Neutron Scattering; Magnetism; Glasses, McMaster University, Hamilton, Canada
Neutron Scattering; Superconductor; Superionic Materials, Australian Nuclear Science and Technology Organization, Australia
Nuclear Analytical Methods (XRF, INAA); Environmental Analysis, Clarkson University, New York, USA
Solid State Physics, Ibaraki University, Japan
Nuclear Reactor Physics, Japan Atomic Energy Agency, Japan
Material Science and Engineering, McMaster University, Canada
Neutron Instrumentation and Materials Energy, High Energy Accelerator Research Organization, Japan
Faculty of Science and Technology, National University of Malaysia, Malaysia
Head of X-Ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Denmark

PEER REVIEWERS
Prof. Sunarno, Ph.D
Prof. Dr. Soeranto Human
Dr. Sigit Santosu
Dr. Imam Kambali
Dr. L.T. Handoko
Prof. Dr. Michio Yamawaki
Prof. Dr. Kenji Kikuchi
Prof. Dr. Fumio Yoshii
Prof. Dr. Stefan Adams

Nuclear Radiation; Nuclear Instrumentation, Gajah Mada University, Indonesia
Agriculture (Plant Mutation Breeding), National Nuclear Energy Agency, Indonesia
Nuclear Reactor Safety, Simulation and Modelling, Safety Management, National Nuclear Energy Agency, Indonesia
Radiochemistry and Radioisotopes, National Nuclear Energy Agency, Indonesia
Indonesian Institute of Sciences, Indonesia
Nuclear Fuel and Material; Nuclear Fusion Technology, University of Tokyo, Japan
Nuclear Materials, Ibaraki University, Japan
Radiation Chemistry; Radiation Polymerization, Japan Atomic Energy Agency, Japan
Materials Modelling, National University of Singapore, Singapore

LANGUAGE EDITOR
Jos Budi Sulistyo, Ph.D

ADMINISTRATIVE OFFICERS
Iis Sustin, Noer’Aida, R. Suhendani, Moh. Zen, Heru Susanto, Aje Noorseto, Suwardi, Moh. Widya, Wenseslaus Roland, Anggiana Rohandi Yusuf

Publisher
Mailing Address
Center for Informatics and Nuclear Strategic Zone Utilization
National Nuclear Energy Agency
Puspiptek Serpong, Tangerang 15314, Indonesia
Phone (+62 21) 7560575, 7562860 ext. 9017, Fax (021) 7560895
Web: http://aij.batam.go.id; E-mail: atomindonesia@batan.go.id

Licences
SIT No. 078/Dit.PP/I/II. 1a & 75; 24.5.75
SIC No. B/289-PK/VI/75; 3.6.75
Dear reader, with great pleasure we provide you with the second issue of Atom Indonesia Volume 41, No.2 (2015). We are pleased to inform you that Atom Indonesia has been indexed by Google Scholar, DOAJ, CROSS REF (DOI), ISJD, and INIS IAEA. By this indexing, we expect that Atom Indonesia becomes better known among the researchers from around the world and easier to access. For this reason, Indonesian Institute of Science (LIPI) has approved our journal as one of the international reputed journals. This information can be found in the Atom Indonesia website, http://aij.batan.go.id. A further target of our journal is to be indexed by Scopus. Therefore, we have been preparing all the requirements to apply to Scopus this year.

The Atom Indonesia Vol.41 No.2 (2015) contains seven articles discussing various applications of nuclear science and technology, such as nuclear fuel cycles, radiation biology, radioisotope applications for nuclear medicine, and health and environmental applications of ionizing radiations. The contributors of those articles came not only from various national institutions and universities, but also from international institutions.

"Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System" was written by L.P. Rodriguez, et al., from the Higher Institute of Technologies and Applied Sciences (InSTEC), Havana, Cuba, jointly with C.A. Branyer and M. Cadavid from the Federal University of Pernambuco, Recife, Brazil, and Tecnología Nuclear Médica SpA (TNM), Santiago, Chile, respectively. They explain the viability of the use of thorium-based fuel cycles in an innovative nuclear energy generation system. In this work, the feasibility of three thorium-based fuel cycles ($^{233}$Th-$^{232}$U, $^{235}$Th-$^{239}$Pu, and $^{232}$Th-U) in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR) and two Pebble-Bed Accelerator Driven Systems (ADSS) is evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, energetic contribution of each fissile isotope, and radiotoxicity of the long lived wastes.

Z. Alatas, from Center for Radiation Safety Technology and Metrology, National Nuclear Energy Agency, Indonesia, reviews "A Paradigm Shift in Low Dose Radiation Biology". She explains that the risks of exposure to low-dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. Recently, the classical paradigm in radiobiology has shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. In this article, the mechanisms of targeted and non-targeted responses, and interrelation between the phenomena on cellular injury after exposure to low doses of radiation as they relate to low dose radiation effects are reviewed.

"Effect of Temperature and Mole Ratio on the Synthesis Yield of Rhenium-Tetrofosmin" was written by Widayastuti and A.H. Gunawan, from the Center for Radioisotopes and Radiopharmaceuticals Technology, National Nuclear Energy Agency, Indonesia. They describe the Technetium-99m (99mTc) tetrofosmin that is widely used in nuclear medicine as a diagnostic agent for myocardial perfusion and as a tumor imaging agent. In this study, rhenium-188 ($^{188}$Re) tetrofosmin was synthesized and applied, because non-radioactive Re can be easily obtained. Synthesis and radiochemical purity analysis of carrier-added $^{188}$Re-tetrofosmin was carried out as a model to study the in-vivo stability of technetium-99m tetrofosmin. Rhenium-188 was used as a tracer to identify the formation of rhenium tetrofosmin. Rhenium gluconate was synthesized first prior to the formation of rhenium tetrofosmin.

"Bacterial Diversity in Buffalo Meat and Bowel from Traditional Market and the Sensitivity of Some Bacteria to Irradiation and Antibiotics" was written jointly by Harsojo and S.Y. Sari, from the Center for Isotopes and Radiation Application, National Nuclear Energy Agency, Indonesia, and Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia. In this article, they explain

...
that the population of buffaloes in Indonesia was 1.37 million in 2012, representing an increase of 5.5% over its population the previous year. Buffaloes have been in Indonesia for such a long time, they have become a part of the lives of the majority of the Indonesian society. Research has been conducted to investigate the bacteria diversity in domestic buffalo meat and bowels from traditional markets in Pandeglang, Banten, in order to ascertain their safety based on their initial contamination and also to study the sensitivity of several of the bacteria to irradiation and antibiotics.

“Studies of Modification of Zeolite by Tandem Acid-Base Treatments and its Adsorptions Performance Towards Thorium” is written G. Nurliati and Z. Salimin, from Center for Radioactive Waste Technology, National Nuclear Energy Agency, Y.K. Krisandri, and R. Sihombing from Department of Chemistry, University of Indonesia. This article described a hierarchical zeolite prepared from natural zeolite using tandem acid-base treatments and applied as adsorbent for Th(IV) removal. Natural zeolite occurred naturally as microporous material. In order to change its micropore size into hierarchical pores, it was modified using two familiar methods simultaneously, dealumination and desilication techniques. The UV-V is result shows that the modified zeolite (ca. 10 mg) has higher adsorption capacity than natural zeolite.

Syarbaini and Bunawas from Center for Radiation Safety Technology and Metrology, National Nuclear Energy Agency, Indonesia, and I.P. Susila from Center for Nuclear Facilities and Engineering, National Nuclear Energy Agency, Indonesia, wrote “Design and Development of Carbone Survey Equipment”. They explain that if a release of radioactive materials to the environment occurs, authorities need to have real-time information on the geographic distribution of the radioactive materials. The mobile radiation detection system facilitates providing the information, as its mobility makes it possible to measure radioactive materials in the at random locations as needed. The purpose of the work was to develop a mobile radiation detection system to measure gamma exposure rate, radioactive material on the ground and airborne radioactive particulate in the environment quickly.

“The Use of Sodium Hypochlorite Solution for (n,γ)\textsuperscript{99m}Mo/\textsuperscript{99m}Tc Generator Based on Zirconium-Based Material (ZBM)” was written by I. Saptiama, Marlina, E. Sarmini, Herlina, Sriyono, Abidin, H. Setiawan, Kadarisman, and H. Lubis from Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency, Indonesia and A. Mutalib from Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Indonesia. In this article, the development of \textsuperscript{99m}Mo/\textsuperscript{99m}Tc generator using neutron-irradiated natural MoO\textsubscript{3} targets has been conducted to avoid the many problems in preparing \textsuperscript{99m}Mo from fission products. This paper reports the experiments in the use of sodium hypochlorite solution of various concentrations to improve the yield of \textsuperscript{99m}Tc in the performance of (n,γ)\textsuperscript{99m}Mo/\textsuperscript{99m}Tc generators based on the ZBM. The synthesized ZBM was coated with tetraethyl orthosilicate for improving the hardness of the material.

The quality of Atom Indonesia has improved significantly and it follows international standards of publications. Recently Atom Indonesia has also been reaccredited and recognized as reputed international journal by the Indonesian Institute of Science (LIPI). The diversity of authors has increased significantly. This is shown by distributions of authors who come from various national and international universities and institutions. These achievements are due to the contributions of the authors and the involvement of international professional editors, reviewers, and administrators.
Studies of Modification of Zeolite by Tandem Acid-Base Treatments and its Adsorptions Performance Towards Thorium

G. Nurliati¹,², Y.K. Krisnandi², R. Sihombing² and Z. Salimin¹
¹Center for Radioactive Waste Technology, National Nuclear Energy Agency, Puspiptek Area Serpong, Tangerang 15310, Indonesia
²Department of Chemistry, University of Indonesia, Depok 16424, Indonesia

ABSTRACT

Hierarchical zeolite was prepared from natural zeolite using tandem acid-base treatments and applied as adsorbent for Th(IV) removal. Natural zeolite occurred naturally as microporous material. It was modified using two familiar methods simultaneously, dealumination and desilication techniques, to change its micropore size into hierarchical pores. Extensive characterization of both natural and modified zeolites were conducted using XRD, BET, SEM-EDS, and AAS. XRD Patterns of raw, pre-treated, and acid-base tandem modified zeolites show that the modification process has not changed the crystal properties of this material. However, the Si/Al ratio is increased from 6.688 to 11.401 for Na-zeolite (NaZ) and modified zeolite, ZA2B respectively. The surface area is increased from 125.4 m²/g (NaZ) to 216.8 m²/g (ZA2B), indicative of the creation of mesopore in addition to naturally micropore structure. The application of these zeolite materials as adsorbent were carried out using solution of 50 ppm Th⁴⁺ measured using UV-Vis spectrophotometer. The UV-Vis result shows that the modified zeolite (ca. 10 mg) has higher adsorption capacity than natural zeolite. The adsorption process does not fit into Langmuir and Freundlich isotherm and the adsorption capacity of this material increase from 909 mg/g to 2000 mg/g for NaZ and ZA2B respectively.

INTRODUCTION

Indonesia is rich with a large amount of minerals including natural zeolites. Zeolite is an aluminosilicate material with three-dimensional frameworks that consist of SiO₄ and AlO₄ tetrahedra arranged regularly in which each oxygen atom is shared between two tetrahedra [1]. The replacement of Si⁴⁺ with Al³⁺ in tetrahedral structure creates negative formal charge and counterbalanced by exchangeable cations (e.g., Na⁺, K⁺, Ca²⁺, Mg²⁺) [2].

The structure of Zeolite is filled with cavities and channels with dimensions ranging from 0.2 nm to 1 nm (micropores) inside which water molecules and counterions may reside [3]. Small ions and molecules can pass through these channels but large ions and molecules are excluded. Due to its microporosity and relatively high surface area, natural zeolites have been widely used as adsorbents, ion exchanger, catalysts, and separation media [1].

Despite its wide applications, natural zeolite has limitations due to (1) undesired impurity in its structure, and (2) its properties which are not optimized by nature [3]. These limitations can be overcome by modifications of the structure of natural zeolite. Dealumination and desilication are commonly employed to change the properties of natural zeolite such as Si/Al ratio, acidity, and pore size [3,9,13].

Dealumination is a process in which the framework aluminum atoms are removed without destroying the micropore structure. It can be achieved by hydrolysis of the Al-O-Si bonds using
two common methods, i.e., thermal treatment (commonly by steaming) [4] or acid leaching [5]. Dealumination changes the Si/Al ratio in zeolite, hence affecting the surface and acidic properties of zeolite [6]. The desilication process, where it is the silicon atoms which are removed, follows the same pattern as dealumination such as type of lattice defects and mesopore formation. The difference lies in the use of alkaline solution for leaching method [7-9]. Desilication can introduce mesoporosity to zeolite through alkaline treatment [10-12]. J.C. Groen in Huang (2014) suggested that for mordenite with optimal Si/Al ratios (20–30), mesoporosity was introduced after it was subjected to alkaline treatment (0.2 M NaOH at 65°C for 30 min).

Recently, combinations of dealumination and desilication techniques have been employed in order to modify zeolite through mesopore formation [13-15]. Van Laak (2010) found that sequential acid-alkaline treatments of mordenite zeolites (Si/Al = 8–15) are effective for themesopore formation. Our research group [15] has conducted modification of zeolite by combining acid-base treatments to the natural zeolite from Lampung-Indonesia in order to introduce mesoporosity, and studied its capacity to adsorb Cu(II) from aqueous solution. The results show that acid-base treatments enhanced the surface area of the natural zeolite from Lampung-Indonesia by 350% and the adsorption capacity increase by 24%.

Based on the previous work, the aims of this research are to modify natural zeolite from Bayat-Klaten, Central Java, Indonesia, by tandem acid-base treatments, and to study the effect of modification on thorium adsorption. Thorium is a naturally occurring radioactive element widely distributed over the earth’s crust with a half life of 1.39 × 1010 years. Thorium has been extensively used in various application such as light bulb elements, lantern mantles, welding electrodes, and heat-resistant ceramics. Due to its stability at ambient temperature, the direct toxicity of thorium is low. However when living organisms are exposed to thorium nitrate, thorium precipitates in a hydroxide form and is mainly localized in liver, spleen and marrow [1]. Different types of materials have been used as adsorbents for thorium, such as activated carbons and zeolites [1], perlite [16], modified clays MTTZ derivative [17], poly(methacrylic acid)-grafted chitosan/bentonite composite [18], Na-bentonite [19], Al-pilared bentonite [20], and cation exchanger resin [21]. But no data were available for its adsorption on tandem acid-base modified zeolite.

EXPERIMENTAL METHODS

Modification of natural zeolite

The modification of natural zeolite from Bayat-Klaten consists of physical activation, pre-treatment, Na-exchange treatment, and post-modification by tandem acid-base treatments. The activation of natural zeolite was performed by washing the zeolite with demineralized water (1:3 w/v) under stirring for 3 hours. The solid phase was dried at 300°C. The aim of physical activation is to remove water molecules from the voids of zeolite and open the zeolite’s active sites.

The pre-treatment process was conducted following Ming and Dickinson [2]. The activated natural zeolite was treated with 1 M NaOAc buffer to reach a pH of 5; mixing with 30% H2O2 and dithionite-citrate-bicarbonate to remove free carbonates, organic matters, and free iron oxides, respectively. After pre-treatment, the counterbalanced cations in zeolite were converted into sodium ions using 0.5 M NaCl solution (10 g zeolite/100 ml solution) at 80°C under stirring for 2×8 hours.

Post-modification was started with dealumination process, by stirring Na-zeolite in 0.6 M HCl solution (10 g zeolite/100 ml solution) at 100°C for 2 hours (under reflux condition). The solid phase was washed with demineralized water and dried at 65°C. Desilication was conducted by stirring zeolite in 0.2 M NaOH solution (3.3 g zeolite/100 ml solution) at 65°C for 30 minutes. The zeolite samples were then labeled as follow: Raw Zeolite (RZ), Pretreatment Zeolite (PZ), Na-Zeolite (NaZ), 1 Acid treated zeolite (ZA1), 2 acid treated zeolite (ZA2), Acid-base treated zeolite (ZA2B), and base treated zeolite (ZB1). Characterization for raw and modified zeolites were conducted with X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic absorption spectroscopy (AAS), and surface area analysis including Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.

Sorption studies

Kinetic studies of adsorption were performed with 50 ppm Th(IV) solution. About 0.1 g zeolite was mixed with 10 ml solution and placed in a shaker for a certain time interval. The adsorbent was then removed by centrifugation and filtration, while the thorium concentration was determined using UV-Vis spectrometer.
The isotherm studies were conducted with the same process as in the kinetic study by varying concentration of thorium solution in the range of 5-100 ppm and the mixture was shaked for optimum adsorption time obtained from the kinetic study.

RESULTS AND DISCUSSION

The natural zeolite and its derived sample, modified with 0.6 M HCl, 0.2 M NaOH, before and after tandem acid-base treatment, were characterized with X-ray diffraction (XRD). The 2θ values in Fig. 1 show that the main composition of natural zeolite from Bayat-Klaten are mordenite (2θ = 9.79º; 22.37º; 25.63º; 27.24º and 27.76º) and heulandite (2θ = 9.85º; 22.21º; 22.34º; 25.96º; 28.09º). The figure shows that there were no significant changes in the XRD patterns before and after treatments. It confirms that the structure of mordenite and heulandite are preserved despite being treated tandemly with acid and/or base. Huang (2014) showed similar results to this work. The sequential steaming-acid leaching-alkaline treatments did not affect the crystallinity of as-synthesized mordenite zeolite from China.

Further characterization with energy-dispersive X-ray spectroscopy (EDS) (Table 1) shows that the dominant exchangeable cation in natural zeolite structure from Bayat-Klaten is Ca²⁺, indicative of natural zeolite from Bayat-Klaten which is Ca-mordenite and Ca-heulandite type.

<table>
<thead>
<tr>
<th>Element</th>
<th>Raw Zeolite</th>
<th>NaZ</th>
<th>ZA2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>9.52</td>
<td>14.39</td>
<td>10.17</td>
</tr>
<tr>
<td>O</td>
<td>53.10</td>
<td>52.33</td>
<td>52.10</td>
</tr>
<tr>
<td>Na</td>
<td>0.86</td>
<td>2.16</td>
<td>3.54</td>
</tr>
<tr>
<td>Mg</td>
<td>0.52</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Al</td>
<td>5.95</td>
<td>4.73</td>
<td>4.63</td>
</tr>
<tr>
<td>Si</td>
<td>25.72</td>
<td>24.40</td>
<td>28.26</td>
</tr>
<tr>
<td>K</td>
<td>0.57</td>
<td>0.33</td>
<td>0.41</td>
</tr>
<tr>
<td>Ca</td>
<td>1.92</td>
<td>0.69</td>
<td>0.36</td>
</tr>
<tr>
<td>Fe</td>
<td>1.84</td>
<td>0.83</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Post-modification treatments

In this experiment, acid treatment causes dealumination of the zeolites, in which Al-O bonds are weakened by proton attack causing skeletal vacancies and defects. The vacancies and defects enlarge the pore openings of the zeolite, increasing the surface area and adsorption ability [22].

The dealumination process can be divided into three steps: 1) cleavage of O-Al-O bonds, 2) removal of Al atom leaving atomic gaps and silanol nest, and 3) refilling of empty spaces by Si atoms. The suggested reaction in dealumination process is showed in equation (1) [23].

\[
\text{Si-O-Al} + 3\text{HCl} \rightarrow \text{Si-O-Cl}_3 + \text{AlCl}_3 + \text{H}_2\text{O}
\]

Characterization using FTIR shows stretching vibration of silanol groups at 3750 cm⁻¹ and OH stretching band from silanol groups at 3540 -3650 cm⁻¹. Characteristic lattice vibrations of the zeolitic structure can be distinguished from these band: H-O-H bending band at 1630 cm⁻¹, asymmetric stretching vibrations band at 950-1025 cm⁻¹ and 1050-1250 cm⁻¹, symmetric stretching vibrations bands at 750-820 cm⁻¹ and 650-750 cm⁻¹, double ring vibrations at 500-650 cm⁻¹, T-O bending vibrations at 420-500 cm⁻¹, and pore opening vibrations at 300-420 cm⁻¹ [24, 25].

Dealumination process cause wave number shifting in asymmetric stretching of the tetrahedral atoms band to the higher number. Figure 2 shows asymmetric stretching increase from 1048.72 cm⁻¹.
for raw zeolite to 1054.84 cm\(^{-1}\) and 1065.04 cm\(^{-1}\) for NaZ and dealuminated zeolite (ZA1), respectively. This shifting is caused by the leaching of Al from zeolite framework and changes on the bond strength and Si-O-Si angle [26]. Since Si has higher electronegativity than Al and Si-O bond is shorter than the Al-O bond, the decrease of Al content causes the increase of Si-O bond strength.

Fig. 2. FTIR spectrum of natural zeolite and its modified forms.

The next step is alkaline treatments on both Na-exchanged and acid-treated zeolites. The aim of this treatment is to leach Si atoms from zeolite structure and introduce mesoporosity. Alkaline treatments increase the % mass of Si, but overall decreases the Si/Al ratio of both NaZ (from 14.265 to 11.401 for ZA and ZA2B, respectively) and ZA2 (from 6.688 to 4.4715 for NaZ and ZB1, respectively). The Si/Al ratio can affect the mesopore formation in zeolite. Groen et al. in Silaghi [27] found that the optimal Si/Al ratio for introducing mesoporosity to zeolite framework is ~20-50. Below this ratio, only limited mesopore formation occurred since the aluminium atoms prevent Si extraction from the zeolite framework.

Table 2. Si/Al ratio of natural zeolite and its acid-base treated derivatives analysed using AAS

<table>
<thead>
<tr>
<th>Zeolite</th>
<th>% mass Na</th>
<th>% mass Si</th>
<th>% mass Al</th>
<th>Si/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw zeolite</td>
<td>1.515</td>
<td>79.100</td>
<td>7.085</td>
<td>11.164</td>
</tr>
<tr>
<td>ZZ-pre treatment</td>
<td>1.920</td>
<td>63.200</td>
<td>6.825</td>
<td>9.260</td>
</tr>
<tr>
<td>Na-Z(^a)</td>
<td>3.675</td>
<td>73.000</td>
<td>10.915</td>
<td>6.688</td>
</tr>
<tr>
<td>ZA1(^b)</td>
<td>3.925</td>
<td>76.200</td>
<td>6.908</td>
<td>11.031</td>
</tr>
<tr>
<td>ZA2(^c)</td>
<td>1.200</td>
<td>72.250</td>
<td>5.065</td>
<td>14.265</td>
</tr>
<tr>
<td>ZA2B(^d)</td>
<td>1.610</td>
<td>74.050</td>
<td>6.495</td>
<td>11.401</td>
</tr>
<tr>
<td>ZB1(^e)</td>
<td>4.040</td>
<td>71.450</td>
<td>15.155</td>
<td>4.715</td>
</tr>
</tbody>
</table>

\(^a\) sodium homoionic form of zeolite, \(^b\) first dealuminated zeolite, \(^c\) second dealuminated zeolite, \(^d\) tandem acid-base treated zeolite, \(^e\) base treated zeolite.

Structural changes caused by desilication can be observed by FTIR (Fig. 2). The intensity of the characteristic silanol band (at 3500 cm\(^{-1}\)) decreased in desilicated zeolite. This infrared characteristic is known as defect sites in zeolite. Therefore it can be deduced that alkaline attack mostly occurred in these defect sites.

The surface area, isotherm adsorption and pore distribution of zeolite were determined by Brunauer-Emmett-Teller (BET) method. Table 3 shows the enhancement of surface area of the zeolite: from 125.4 mg\(^{-2}\) g\(^{-1}\) (NaZ) to 138.0 and 216.8 mg\(^{-2}\) g\(^{-1}\) for alkaline treated zeolite, ZB1 and ZA2 respectively. It indicates that alkaline treatments could introduce mesoporosity in natural zeolite.

Table 3. BET characterization of raw zeolite and its modified forms

<table>
<thead>
<tr>
<th>Zeolite</th>
<th>(S_{\text{ext}})(^a) (m(^2) g(^{-1}))</th>
<th>(V_{\text{micro}})(^b) (cc g(^{-1}))</th>
<th>(V_{\text{total}})(^c) (cc g(^{-1}))</th>
<th>(V_{\text{meso}})(^d) (cc g(^{-1}))</th>
<th>(R_{\text{micr}})(^e) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw zeolite</td>
<td>140.0</td>
<td>0.05934</td>
<td>0.1357</td>
<td>0.07636</td>
<td>0.62</td>
</tr>
<tr>
<td>NaZ</td>
<td>125.4</td>
<td>0.04642</td>
<td>0.1109</td>
<td>0.06448</td>
<td>1.02</td>
</tr>
<tr>
<td>ZA1</td>
<td>120.6</td>
<td>0.04864</td>
<td>0.1395</td>
<td>0.09086</td>
<td>0.66</td>
</tr>
<tr>
<td>ZB1</td>
<td>138.0</td>
<td>0.05773</td>
<td>0.1326</td>
<td>0.07487</td>
<td>td</td>
</tr>
<tr>
<td>ZA2B</td>
<td>216.8</td>
<td>0.09795</td>
<td>0.1804</td>
<td>0.08245</td>
<td>0.52</td>
</tr>
</tbody>
</table>

\(^a\) Multipoint BET, \(^b\) Method, \(^c\) at \(P/P_0 = 0.992594\)
\(^d\) Total, \(^e\) ‘DA’ method pore radius (mode)
The \( \text{N}_2 \) isotherm adsorption of zeolite and its modified zeolite forms in Fig. 4 shows that there is hysteresis loop in the isotherm adsorption curve of desilicated zeolite ZA2B and ZB1 (Fig. 4 (d) and (e)). The curve is following IUPAC isothermal curve type four, which indicated there are capillary condensation in mesoporous material [28].

Barrett-Joyner-Halenda (BJH) analysis shows the pore size distribution in zeolite. Figure 5 (a) shows that pore size (diameter, \( \Phi \)) distribution in raw zeolite is < 2 nm as well as in NaZ (Fig. 5 (b)), ZA1 (Fig. 5 (c)) and ZB1 (Fig. 5 (d)). While in ZA2B (Fig. 5 (e) and enlarge in Fig. 6), pore size distribution lies in \( d < 2 \) nm and 2-8 nm. The existence of 2-8 nm pores indicated that tandem acid-base treatments can introduce mesoporosity in zeolite, leading to the hierarchical structure of zeolites.
Figure 7 (a) suggests that the schematic mechanism of optimal mesopore formation in zeolite upon alkaline treatment. Since the Si/Al ratio of parent zeolite (ZA2) used for desilication process is below 20, the Al atoms prevent Si extraction hence the formation of mesopore (ø > 2 nm) in this work is limited, as illustrated in Fig. 7 (b).

**Fig. 6.** BJH desorption curve of ZA2B (enlargement of Fig. 5).

Figure 7 (a) suggests that the schematic mechanism of optimal mesopore formation in zeolite upon alkaline treatment. Since the Si/Al ratio of parent zeolite (ZA2) used for desilication process is below 20, the Al atoms prevent Si extraction hence the formation of mesopore (ø > 2 nm) in this work is limited, as illustrated in Fig. 7 (b).

**Fig. 7.** The schematic mechanism of mesopore formation in zeolite upon alkaline treatment (extracted from [21]).

**Sorption studies**

This sorption studies focused on the removal of thorium. The aim of this experiment was to determine the optimum adsorption time and the adsorption capacity of zeolites before and after modification. UV-vis spectrometer analysis (Fig. 8) shows that the optimum time for adsorption of 50 ppm Th(IV) solution is 120 minutes for both NaZ and ZA2B. Furthermore, it can be seen that after 180 minutes the adsorption capacity tends to decrease, especially for the modified zeolite, namely ZA2B. This indicates that some Th$^{4+}$ was leaching from the zeolite, possibly because the concentration equilibrium between Th$^{4+}$ inside and outside zeolite may be shifted.

**Fig. 8.** UV-vis spectrometer analysis for determination of optimum contact time in adsorption of Th(IV) by NaZ (bold line) and ZA2B (dash line).

The determination of the adsorption capacity of zeolite was conducted by varying the concentration of thorium and contacting the thorium-containing solution with zeolite for 120 minutes. Figure 9 shows that adsorption capacity of acid-base treated zeolite (ZA2B) is slightly higher than natrium homoionic form (NaZ). Because the initial concentration of thorium solution used was relatively low (only up to 100 mg/L) then the difference was not significant and the adsorption had not reached saturation (as can be seen in Fig. 9 the adsorption curves are still increasing and had not reached a plateau). Nevertheless, the acid-base-treated zeolite removed higher quantities of thorium because of its larger framework channels and their higher number of ion-exchange sites.

**Fig. 9.** UV-Vis characteristic of Th(IV) adsorption by NaZ (bold line) and ZA2B (dash line).

To determine the adsorption capacity quantitatively, the isotherm data are fitted to different isotherm adsorption models. Adsorption isotherm describes the equilibrium of liquid adsorption on solid surface. Two commonly used adsorption isotherm models on solid surface are the Langmuir and Freundlich models. The Langmuir equation shown in eq (2) [29]:

$$\frac{C_{eq}}{q} = \frac{1}{q_b} \frac{C_{eq}}{q_0}$$

(2)
C_{eq} is ion concentration in equilibrium solution (mg/L or mmol/L), q is adsorption per gram of adsorbent which is obtained by dividing the amount of adsorbate by the weight of the adsorbent (mg/g or mmol/g) and q_m is adsorption capacity (mg/g or mmol/L). Hence, if a graph of C_{eq}/q is plotted against C_{eq}, it will be a straight line, and adsorption capacity is 1/slope.

The Freundlich equation is shown in eq (3):

\[
\log q_e = \log K_F + \frac{1}{n} \log C_{eq}
\]

n is a constant value related to adsorption energy. K is a constant value related to adsorbent capacity.

Figure 10 shows that R-square value of both Langmuir and Freundlich isotherm model are far from the expected value (ca. 1). It means that the adsorption of thorium in zeolite does not fit in both isotherm models.

To determine adsorption capacity, equation 4, that is modified from equations in Langmuir and Freundlich isotherm models, is used instead [29].

\[
\frac{C_{eq}^{1/n}}{q} = \frac{1}{q_m b} + \frac{C_{eq}^{1/n}}{q_m}
\]

If C_{eq}^{1/n}/q is plotted against C_{eq}^{1/n}, a straight line arises, hence the adsorption capacity is proportional with 1/slope.

Fig. 10. Linearization of Langmuir isotherm (a) and Freundlich isotherm (b) NaZ (bold line) and ZA2B (dash line).

The adsorption capacity of both zeolites (NaZ and ZA2B) shows in Table 4 indicate that tandem acid-base treatments of natural zeolite from Bayat-Klaten (ZA2B) can improve its adsorption capacity significantly, by as high as ca. 120%, compared to its homoionic form (NaZ). This result is higher than previous work of our research group [15].

Talip et al. [16] used expanded perlite to adsorp thorium from aqueous solution and found that its maximum thorium uptake capacity was 84±4% and the adsorption reached equilibrium within 60 minutes. Guerra et al. [17] modified diopite and bentonite mineral samples from the Amazon region, Brazil with MTTZ derivative (5-mercapto-1-methyltetrazole) and the modification increased the thorium removal rate to 13% and 9% for diopite and bentonite respectively (The degree of reaction was estimated 80% for DMTTZ and 65% for BMTTZ samples). Kaygun et al. [30] modified clinoptilolite (CLI) from Turkey with polyacrylonitrile (PAN) and found the equilibrium as 97.97% sorption of thorium (IV) solution was reached within 45 minutes. Metaxas et al. [1] compared thorium removal by different adsorbents, i.e. two types of activated carbons extracted from olive pulp (carbon ACOP) and olive stone (carbon ACO), two types of natural zeolites (Na-CLI and Na-MOR), and two types of synthetic zeolites (NaX and NaA). They found that percentage thorium removal for carbon ACOP, carbon ACO, Na-CLI, Na-MOR, NaA and NaX were 70.30%, 42.5%, 14.55%, 37.65%, 50.40%, and 71.15%, respectively. The percentage thorium removal from this work were 71.5% for NaZ and 76.5% for ZA2B. Thus, it can be seen that modification of zeolite
from Bayat-Klaten has higher adsorption capacity than Na-CLI, Na-MOR, NaX, NaA, activated carbons, and modified bentonite with MTTZ. This might be caused by the acid-base treatments increasing the zeolite’s framework channels and ion-exchange sites. But it has a lower removal capability than manufactured expanded perlite, CLI(PAN), and modified diquete with MTTZ. This is probably because the manufactured expanded perlite has uniform active sites and the presence of MTTZ molecules which are intercalated in the diquete structures enhanced its surface area significantly (from 25 m²g⁻¹ to 178.8 m²g⁻¹) while composite material such as CLI(PAN) have better selectivity for the capture of thorium ions, and smaller solubility in water than the respective inorganic compound [30]. However, as the manufactured adsorbents undergo a certain process to get into the final form, the cost-effectiveness of using each of these groups of adsorbents should be considered in addition to the simplicity of modification procedure and the abundance of the inorganic materials in nature. Thus, tandem acid-base treatment is a simple, effective and economical procedure to modified natural zeolite as thorium adsorbent. The comparison of thorium uptake capacity on different adsorbents is given graphically in Fig. 12.

Table 4. Adsorption capacity of thorium using natural zeolite

<table>
<thead>
<tr>
<th>Zeolite*</th>
<th>Slope</th>
<th>Adsorption capacity (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaZ</td>
<td>0.0011</td>
<td>909</td>
</tr>
<tr>
<td>ZA2B</td>
<td>0.0005</td>
<td>2000</td>
</tr>
</tbody>
</table>

NaZ: homoionic form zeolite  
ZA2B: tandem acid-base treated zeolite

Fig. 12. The comparison of thorium uptake capacity on different adsorbents.

CONCLUSION

The modification of natural zeolite from Bayat-Klaten using tandem acid-base treatments has successfully introduced mesoporosity in zeolite framework providing hierarchical porosity, thus improving its properties. Dealumination treatment decreased the amount of aluminium in the structure by 53.6% and changed the Si/Al ratio of zeolite to 14.265. Desilication treatment increased the surface area of zeolite by 72.9% and introduced mesoporosity in the zeolite framework. This preliminary study shows that hierarchical porosity plays an important role in the adsorption capacity of zeolite. The tandem method is shown as a potential technique for modifying natural zeolites that could give them added value and functions.

To conclude, the sorption studies show that the thorium ion adsorption capacity of acid-base treatments zeolite (ZA2B) is 120% higher than that of the natrium homoionic form (NaZ). Further work should be carried out to study the stability of thorium-filled hierarchical zeolite in matrix so that this work can be useful in handling aqueous radioactive wastes through immobilization process.

ACKNOWLEDGMENT

We thank Bambang Sugeng, Dr. Adel Fisli, and Sugeng Purnomo S.ST from National Nuclear Energy Agency for help in XRD, BET, and AAS analysis, respectively.

REFERENCES