Published Online: 09 February 2016
AIP Conference Proceedings 1710, 020003 (2016);
more...View Affiliations
In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO2) nanoparticle and LiClO4 as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO2 and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ion transference number measurement. XRD profiles show that the addition of ZrO2 and LiClO4 disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10−4 S cm−1) was obtained when 4 wt% of ZrO2 nanoparticle and 40 wt% of LiClO4 salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.
  1. 1. M. Ogawa, K. Yoshida and K. Harada, SEI Technical Review 74, 88–90 (2012) Google Scholar
  2. 2. M. Tatsumisago, M. Nagao, A. Hayashi, J. As. Ceram. Soc. 1, 17–25 (2013), Google ScholarCrossref
  3. 3. E. Kartini, M. Arai, H. Iwase, T. Yokoo, K. Itoh, T. Kamiyama and S. Purnama, Journal of Neutron Research 13, 145–148 (2005), Google ScholarCrossref, CAS
  4. 4. E. Kartini, T. Sakuma, K. Basar and M. Ikhsan, Solid State Ionics 179, 706–711 (2008), Google ScholarCrossref, CAS
  5. 5. A. Manuel Stephan, European Polymer Journal 42, 21–42 (2006), Google ScholarCrossref
  6. 6. F.M. Gray, Solid polymer electrolytes-fundamentals and technological applications. (VCH; New York, 1991) Google Scholar
  7. 7. T. H. Smith, Proceedings - Electrochemical Society 12 (1995) 155. Google Scholar
  8. 8. J. David, Journal of Power Sources 57, 71–73 (1995), Google ScholarCrossref, CAS
  9. 9. M Rinaudo, Prog. Polym. Sci. 31, 603–632 (2006), Google ScholarCrossref, CAS
  10. 10. R.A.A Muzzareli, C. Muzzareli, Adv. Polym. Sci. 186, 151–209 (2005), Google ScholarCrossref
  11. 11. M.Z.A. Yahya,. A.K. Arof, Eur Polym. J. 39, 897–902 (2003), Google ScholarCrossref, CAS
  12. 12. N.M. Morni, A.K. Arof, Journal of Power Sources 77, 42–48 (1999), Google ScholarCrossref, CAS
  13. 13. N.S. Mohamed, R.H.Y. Subban, A.K. Arof, J. Power Sources 56, 1531–1536 (1995), Google ScholarCrossref
  14. 14. N.H.A. Rosli, C.H. Chan, R.H.Y. Subban, Tan Winie, Physics Procedia 25, 215–220 (2012), Google ScholarCrossref, CAS
  15. 15. E. Yulianti, A. Karo Karo, L. Susita, Sudaryanto, Procedia Chemistry 4, 202–207 (2012), Google ScholarCrossref, CAS
  16. 16. L. Ye, and Z. Feng, “Polymer electrolyte as solid solvents and their application”, in: Polymer Electrolyte Fundamentals and Applications, ( Cesar Sequeira and Diogo Santos, Ed., Woodhead Publishing, Cambridge, 2010), pp. 550–582, Google ScholarCrossref
  17. 17. Sudaryanto, Evi Yulianti, and Heri Jodi, Polymer-Plastics Technology and Engineering, 54, 290–295 (2015), Google ScholarCrossref, CAS
  18. 18. Evi Yulianti and Sudaryanto, “The Effect of Plasticizer Addition to Solid Polymer Electrolyte Based on ChitosanMonmorillonite Nanocomposite”, in Proceedings of the 14th Asian Conference on Solid State Ionics (ACSSI 2014), edited by S. Adams and J. Kawamura,(Research Publishing, Singapore, 2015) pp. 606–615, Google Scholar
  19. 19. H-M. Xiong, Z-D. Wang, D-P. Xie, L. cheng, Y-Y. Xia, J. Mater. Chem. 16, 1345–1349 (2006), Google ScholarCrossref, CAS
  20. 20. F. Croce, R. Curini, A. Martinelli, L. Ppersi, F. Ronci, B. Scrosati, R. Caminiti, J. Phys. Chem. B. 103, 10632–10638 (1999)., Google ScholarCrossref, CAS
  21. 21. J. Xi, X. Qiu, W., Zhu, X. Tang, Micropor. Mesopor. Mater. 88, 1–7 (2006)., Google ScholarCrossref, CAS
  22. 22. A. D’epifanio, F. Serraino Fiory, S. Licoccia, E. Traversa, B. Scrosati, F. Croce, J. Appl. Electrochem. 43, 403–408, (2004)., Google ScholarCrossref
  23. 23. F. Croce, L. Persi, B. Scrosati, F. Serraino Fiory, E. Plichta, M. S. Hendrickson, Electrochim. Acta 46, 2457–2461 (2001)., Google ScholarCrossref, CAS
  24. 24. M. M. Islam, S. M. Masum, M. A. I. Molla, M. M. Rahman, A. A. Shaikh, S. K. Roy,. Intenational Journal of Basic & Applied Sciences 11, 116–130, (2011). Google Scholar
  25. 25. A. Bouridah, F. Daland, D. Deroo, M. Arnand, J. Appl. Electrochem. 17, 625–631 (1987), Google ScholarCrossref, CAS
  26. © 2016 AIP Publishing LLC.