RISALAH PERTEMUAN ILMIAH PENELITIAN DAN PENGEMBANGAN APLIKASI ISOTOP DAN RADIASI

Industri, Lingkungan, Kesehatan, Pertanian dan Peternakan

BADAN TENAGA NUKLIR NASIONAL
PUSLITBANG TEKNOLOGI ISOTOP DAN RADIASI
JAKARTA, 2002
RISALAH PENELUARAN UMUM
PENELITIAN DAN PENGEMBANGAN
APLIKASI ISOTOP DAN RADIASI

Institut Ilmu Kecerdasan
Pertanian dan Peternakan

BADAN TENAGA NUKLIR NASIONAL
BUSTEKNIOLOGI ISOTOP DAN RADIASI
JAKARTA 2005
RISALAH PERTEMUAN ILMIAH
PENELITIAN DAN PENGEMBANGAN
APLIKASI ISOTOP DAN RADIASI

2001

Jakarta, 6 - 7 Nopember 2001

Industri, Lingkungan, Kesehatan,
Pertanian dan Peternakan

BADAN TENAGA NUKLIR NASIONAL
PUSLITBANG TEKNOLOGI ISOTOP DAN RADIASI
RISALAH PENUMBUAN ILMIH
PENELITIAN DAN PENGEMBANGAN
APLIKASI ISOTOP DAN RADIOISI
2001

Jakarta, 17 November 2001

Industri Penelitian, Riset, dan Pendidikan
Biro Riset dan Penelitian

Badan Tenaga Nuklir Nasional
Buletin Teknologi Isotop dan Radioisotop
Penyunting:
1. Dra. Nazly Hilmy, Ph.D., APU
2. Dr. Ir. Moch. Ismachi, APU
3. Dr. F. Suhadi, APU
4. Ir. Elsje L. Patrimadjawane, MS, APU
5. Dr. Singgih Sutrisno, APU
6. Marga Utama, B.Sc, APU
7. Ir. Wandojo
8. Dr. Made Sumatra, MS, APU
9. Dr. Mugiono, APU
10. Drs. Edih Suwadi, APU
11. Dr. Sofjan Yatin
12. Dr. Ishak, M.Sc. M.ID, APU
13. Dr. Nelly D. Leswara
14. Dr. Ir. Komaruddin Idris

P3TIR - BATAN
Universitas Indonesia
Institut Pertanian Bogor

I jil.; 30 cm

Isi jil. I. Industri, Lingkungan, Kesehatan, Pertanian dan Peternakan

ISBN 979–95709–8–0

I. Isotop - Seminar I. Judul II. Nazly Hilmy

541.388

Alamat:
Puslitbang Teknologi Isotop dan Radiasi
Jl. Cinere Pasar Jumat
Kotak Pos 7002 JKSKL
Jakarta 12070
Telp.: 021-7690709
Fax.: 021-7691607; 7513270
E-mail: p3tir@batan.go.id; sroji@batan.go.id
Home page: http://www.batana.go.id/p3tir
DAFTAR ISI

Pengantar .. i
Daftar Isi .. ii
Laporan Ketua Panitia Pertemuan Ilmiah iii
Sambutan Kepala Badan Tenaga Nuklir Nasional vii

MAKALAH UNDANGAN

Strategi Pengembangan Sumber Daya Manusia untuk Pemberdayaan Usaha Kecil Menengah
PROF. Dr. ERIYATNO (Deputi SDM - BPSD KUKM) 1

Role of Isotopes and Radiation for Industrial Development and Advance Materials
Dr. TADAO SEGUCHI (TRCRE, JAERI) ... 5

Strategi Pengembangan Industri Nasional Memasuki Abad Ke-21
Dirjen Industrial Kimia, Agro dan Hutan Industri 9

MAKALAH PESERTA

Penyelidikan tingkat kebocoran bendungan Jatiluhur dengan pendekatan isotop alam dan hidro-kimia
PASTON SIDARUK, INDROJONO, DJIONO, EVA RISTA RISTIN, SATRIO, dan ALIP 25

Penyelidikan daerah imbuah air tanah Bekasi dengan teknik hidroisotop
SYAFALNI, M. SRI SAENI, SATRIO, dan DJIONO 33

Indikasi erosi di daerah perkebunan teh - gunung mas - Puncak - Jawa Barat menggunakan isotop alam 137Cs
NITA SUHARTINI, BAROKAH ALIYANTA, dan ALI ARMAN LUBIS 43

Penentuan konsentrasi 226Ra dalam air minum dan perkiraan dosis interna dari beberapa lokasi di Jawa dan Sumatera
SUTARMAN, MARZAINI NAREH, TUTIK INDIYATI, dan MASRUR 49

Daerah resapan air tanah cekungan Jakarta
WANDOWO, ZAINAL ABIDIN, ALIP, dan DJIONO 57

Radioaktivitas lingkungan pantai Makassar : Pemantauan unsur torium dan plutonium dalam sedimen permukaan
A. NOOR, N. KASIM, Y.T. HANDAYANI, MAMING, MERLIYANI, dan O. KABI 65

Metode peruntuk menganalisis sifat aliran air dalam jaringan pipa
SUGIHARTO, PUGUH MARTYASA, INDROJONO, HARIJONO, dan KUSHARTONO .. 69

Penentuan nilai 34S dalam pupuk dan aplikasinya untuk menentukan sumber sulfur pada air tanah kampung Loji Krawang
E. RISTIN PUJI INDIYATI, ZAINAL ABIDIN, JUNE MELLAWATI, PASTON SIDARUK, dan NENENG L.R., ... 75

Pembuatan komposit campuran serbuk kayu - poliester - serat sabut kelapa untuk papan partikel
SUGIARTO DANU, DARSONO, PADMONO, dan ANGESTI BETTY 81

Kombinasi pelapisan permukaan kayu lapis Meranti (Shorea spp) dengan metode konvensional dan radiasi Ultra Violet
DARSONO, dan SUGIARTO DANU ... 89
Studi kopolimerisasi radiasi stirena ke dalam film karet alam (Pengaruh dosis iradiasi dan kadar monomer)
SUDRAJAT ISKANDAR, ISNI MARLIYANTI, dan MADE SUMARTI K. 95

Pengaruh pencucian dan pemanasan terhadap sifat fisik mekanik barang celup dari latex alam iradiasi
MADE SUMARTI K., MARGA UTAMA, dan DEVI LISTINA ... 103

Studi distribusi waktu tinggal pada proses pencampuran kontinu dengan model bejana herder
SUGIHARITO, INDROJONO, KUSHARTONO, dan IGA WIDAGDA 109

Studi radiasi latar belakang sinar Gamma di laboratorium Sedimentologi, P3TIR, BATAN
dengan spektrometri Gamma
ALI ARMAN LUBIS, BAROKAH ALIYANTA, dan DARMAN ... 117

Penentuan Uranium dan Thorium sedimen laut dengan metode aktif dan pasif
ALI ARMAN LUBIS, dan JUNE MELLAWATI .. 125

Deteksi virus hepatitis B (VHB) dalam serum darah dengan teknik PCR (Polymerase Chain Reaction)
LINA, M.R., DADANG S., dan SUHADI, F. .. 131

Pendahuluan pembuatan Kit Ria mikroalbuminuria untuk penerkisaa albuminuria
SUKIYATI D.J., SITI DARWATI, GINA M., DJOHARLY, TRININGSIH, dan
SULAIMAN .. 137

Ekstraksi Uranium dari limbah cair artifisial dengan teknik membran cair aliran kontinu
RUSDIANASARI, dan BUCHARI ... 143

Meningkatkan akurasi probabilitas pencaran sinar Gamma energi 165.9 keV untuk 137Ba
dengan peralatan koinsiden 4n$^\beta$- $^\gamma$
NADA MARNADA, dan GATOT WURDIYANTO .. 149

Efek demineralisasi dan iradiasi gamma terhadap kandungan Kalsium dan kekerasan tulang
Bovine Iliopatellaris
B. ABBAS, F. ANAS, S. SADJIRUN, P. ZAKARIA, dan N. HILMY 155

Rejection study of cancelous allograft in emergency orthopaedic operation
MENKHEN MANJAS, and NAZYL HILMY .. 161

Experience of using amniotic membrane after circumcision
MENKHEN MANJAS, ISMAL, and DODY EMANSYAH .. 165

Using amniotic membrane as wound covering after cesarean section operation
MENKHEN M., and HELFIAL HELMI .. 169

Efek Glutathione terhadap daya tahan khamir Schizosaccharomyces pombe yang diiradiasi
dalam N_2, N_2O, dan O_2
NIKHAM .. 173

Radiolisis pati larut sebagai senyawa model polisakarida. I. Efek pelarut dan laju dosis iradiasi
YANTI S. SOEBIANTO, SITI MEILANI S., dan DIAH WIDOWATI 181

Pengaruh iradiasi gamma terhadap derajat kekuningan (Yellowness Index) dan sifat
mekanik plastik pengemas makanan
RANDI P. TANHINDARO, dan DIAN I. .. 191

Metode analisis unsur dengan spektrometri total reflection x-ray fluorescence
YULIZON MENRY, ALI ARMAN LUBIS, dan PETER WOBRAUSCHEK 205
Pembentukan galur tanaman kacang tanah yang toleran terhadap Aluminium melalui kultur in vitro
ALI HUSNI, I. MARISKA, M. KOSMIATIN, ISMIATUN, dan S. HUTAMI .. 215

Pembentukan kalus dan spot hijau dari kultur Antera galur mutan cabai keriting (Capsicum annum L.) secara in vitro
AZRI KUSUMA DEWI, dan ITA DWIMAHYANI ... 221

Peningkatan toleransi terhadap Aluminium dan pH rendah pada tanaman kedelai melalui kultur in vitro
IKA MARISKA, SRI HUTAMI, dan MIA KOSMIATIN ..…… 225

Efek radiasi sinar gamma dosis rendah pada pertumbuhan kultur jaringan tanaman ciplukan (Pysalis angulata L.)
ROSMIARTY A. WAHID .. 235

Pengujian galur mutan Sorghum generasi M4 terhadap kekerasan di Gunung Kidul
SOERANTO, H., CARKUM, SIHONO, dan PARNIO ... 241

Evaluasi penampilan fenotip dan stabilitas beberapa galur mutan kacang hijau di beberapa lokasi percobaan
RIYANTI SUMANGGONO, dan SOERANTO HUMAN .. 247

Penggunaan pupuk layat fosfat alam untuk meningkatkan produksi tanaman jagung di lahan kering
HAYID RASJID, J. WEMAY, E.L. SISWORO, dan W.H. SISWORO .. 255

Pertumbuhan dan produksi kacang hijau pada kondisi ketersediaan air terbatas
THOMAS .. 261

Peningkatan keragaman sifat agronomi tanaman melati Jasminum sambac (L.) W. Ait dengan teknik mutasi buatan
LILIK HARSANTI, dan MUGIONO .. 273

Pengaruh sumber eksplan dan Thidiazuron dalam media terhadap regenerasi eksplan mutan nium (Pogostemon cablin Benth.)
ISMIYATI SUTARTO, MASNIZAL, dan YULIASTI ... 281

Kombinasi bahan organik dan pupuk N inorganik untuk meningkatkan hasil dan serapan N pada gogo
IDAWATI, dan HARYANTO .. 287

Kuantifikasi transformasi internal 15N untuk memprediksi daya suplai Nitrogen pada lahan paska deforestasi
I.P. HANDAYANI, P. PRAWITO, dan E.L. SISWORO .. 295

Pengaruh fosfat alam dan pupuk kandang terhadap efisiensi pemupukan P pada oxisol Sumatera Barat
JOKO PURNOMO, KOMARUDDIN IDRIS, SUWARNO, dan ELSJE L. SISWORO 305

Studi kandungan unsur mikro pada UMMB sebagai suplemen pakan ternak ruminansia
FIRSONI, YULIZON MENRY, dan BINTARA HER SASANGKA .. 313

Penggunaan suplemen pakan dan pemanfaatan teknik radioimmunoassay (RIA) untuk meningkatkan efisiensi Inseminasi Buatan (IB)
TOTTI TJIPTOSUMIRAT, DARLOG S. SUPANDI, dan FIRSONI .. 319

Pembuatan antibodi pada kelinci yang diimunisasi dengan Brucella abortus
SUHARNI SADI .. 325
Pengaruh dosis inokulasi *Trypanosoma evansi* terhadap gambaran darah hewan inang muncit 333

M. ARIFIN

Penentuan dosis iradiasi pada *Fasciola gigantica* (cacing hati) yang memberi perlindungan pada kambing 337

B.J. TUASIKAL, M. ARIFIN, dan TARMIZI

Pengalihan jenis kelamin ikan nila gift (*Oreochromis niloticus*) dengan pemberian hormon testosteron alami 345

ADRIA P.M. HASIBUAN, dan JENNY M. UMAR

Pengamatan klinis dan serologis pada domba pasca vaksinasi L-3 iradiasi cacing 349

Haemonchus contortus dalam uji skala lapangan

SUWARIJ PARTODIHARDJO, dan ENUH RAHARJO

Pengaruh iradiasi terhadap cemaran bakteri pada udang windu (*Penaeus monodon*) 355

HARSOJO, DIDI ROHADI, LYDIA ANDINI S., dan ROSALINA S.H.

Kondisi optimal untuk penentuan radioaktivitas serangga hama bertanda P-32 dengan menggunakan pencacah sintilasi cair 361

YARIANTO S., BUDI SUSILDO, dan S. SUTRISNO

Kemandulan terinduksi radiasi pada hama kapas *Helicoverpa armigera* Hubner (Lepidoptera : Noctuidae) dan kemandulan yang diturunkan pada generasi F1 367

SUHARYONO, dan S. SUTRISNO

Pengembangan parasitasi * Bioseres* sp pada larva Bactrocera carambolae (DREW & HANCOCK) sebagai komplementer teknik serangga mandul 373

DARMAWI SIKUMBANG, INDAH A. NASUTION, M. INDIRAWATMI, dan ACHMAD N. KUSWADI

Pengaruh iradiasi gamma terhadap Thiamin & Riboflavin pada ikan tuna (*T. thynnus*) dan salem (*Onchorhynchos gorbuscha*) segar 379

RINDY P. TANHINDARTO, FOX, J.B., LAKRITZ, L., dan THAYER, D.W.

Budidaya ikan Nila gift yang diberi pakan pelet kelapa sawit 385

YENNI M.U., dan ADRIA P.M.

Sintesis hidrogel kopoli (2-hidroksi etil metakrilat/N-vinil pirrolidon) dengan iradiasi gamma dan imobilisasi ametrin 389

ERIZAL
DETEKSI VIRUS HEPATITIS B (VHB) DALAM SERUM DARAH DENGAN TEKNIK PCR (POLYMERASE CHAIN REACTION)

Lina, M.R., Dadang, S., dan Suhadi, F.
Puslitbang Teknologi Isotop dan Radiasi, BATAN, Jakarta

ABSTRAK

DETEKSI VIRUS HEPATITIS B (VHB) DALAM SERUM DARAH DENGAN TEKNIK PCR (POLYMERASE CHAIN REACTION). Penelitian untuk mendeteksi adanya VHB dalam darah dengan teknik PCR menggunakan 2 macam pasangan primer oligonukleotida, telah dilakukan. Sepuluh serum dipakai, terdiri dari 5 serum HBsAg positif, 1 serum HBsAg positif lemah, 3 serum HBsAg negatif, dan 1 serum DNA VHB negatif hasil PCR dari laboratorium lain. Perlakuan awal sampel yaitu untuk memupukisasi dan mengextraksasi DNA virus, dilakukan dengan metode BOOM. Dua macam pasangan primer, yaitu PC1 & PC2 dan P1 & P2 dipakai untuk PCR. Penggunaan primer PC1 & PC2 dilakukan dengan 2 perlakuan, yaitu L & I. Amplifikasi DNA dari 5 serum HBsAg positif dengan perlakuan L, dan menunjukkan DNA VHB positif hanya pada 3 serum, sedangkan dengan perlakuan I dan dengan penggunaan primer P1 & P2 (pasangan primer ke dua), menunjukkan hasil positif untuk ke lima serum tersebut. Dari pemeriksaan 3 serum HBsAg negatif, hanya 1 serum memperlihatkan DNA VHB positif, yaitu dari hasil proses PCR menggunakan primer P1 & P2. Tes PCR dengan perlakuan L dan dengan penggunaan primer P1 & P2 menunjukkan hasil positif untuk serum dengan DNA VHB negatif hasil PCR dari laboratorium lain. Tes PCR dalam penelitian ini menunjukkan hasil negatif untuk 1 serum dengan HBsAg positif lemah. Dalam penelitian ini ternyata proses PCR menggunakan primer P1 & P2 lebih sensitif dibanding dengan primer PC1 & PC2.

ABSTRACT

DETECTION OF HEPATITIS B VIRUS (HBV) IN BLOOD SERUM BY MEANS OF PCR (POLYMERASE CHAIN REACTION) TECHNIQUE. Research for detecting the presence of HBV DNA in serum with PCR technique by using two pairs of oligonucleotide primers, has been carried out. Ten serum consisted of 5 HBsAg positive serum, 1 HBsAg weak positive serum, 3 HBsAg negative serum, and 1 sample with negative HBV DNA as a previous PCR product from another laboratory, were used to purify and to extract the DNA of virus, the sample pretreatment was done with Boon method. The two pairs of' primers used for the PCR process, were PC1 & PC2 and P1 & P2. The amplification process by means of PC1 & PC2 primer was carried out with two treatments, L & I. treatments of 5 HBsAg positive serum samples, 3 were positive for HBV DNA by PCR test with L treatment. The PCR test by means of either the same primer but different treatment (I treatment) or different pair of primer (P1 & P2 primer), revealed the presence of HBV DNA in all of HBsAg serum mentioned above of HBsAg negative serum, 1 serum was positive for HBV DNA and it was an amplification product of PCR test by using P1 & P2 primer. The amplification products of PCR process with either I treatment or P1 & P2 primer, showed the positive result for 1 HBV positive serum as a previous PCR product from another laboratory. All of the PCR test in this research provided the negative HBV DNA result in the HBsAg weak positive serum. The DNA amplification process by means of P1 & P2 primer was more sensitive compared with PC1 & PC2 primer.

PENDAHULUAN

Hepatitis atau dikenal sebagai penyakit liver atau hati disebabkan peradangan pada jaringan hati. Timbulnya peradangan ini akibat infeksi virus, salah satunya adalah virus hepatitis B (VHB). Ukuran VHB sekitar 42 nm yang dikenal sebagai partikel Dane. Struktur VHB terdiri dari selubung (envelope) dari antigen permukaan (HBsAg), nukleokapsid dari antigen core (HBeAg) dan antigen precore (HBeAg) serta genom (DNA) virus yang berukuran 3,2 kb [1, 2, 3]. Antigen tersebut dan antibodi yang terbentuk dapat dipakai sebagai petanda tes serologik.

Jumlah penderita hepatitis B semakin meningkat baik di dunia maupun di Indonesia. Hal ini antara lain disebabkan sebagian individu yang terinfeksi VHB tidak menunjukkan gejala klinis / asimtomatik atau manifestasi yang timbul berupa gejala yang ringan / subklinis. Sebagian penderita hepatitis B tersebut akan menjadi kronis yang berlanjut menjadi sirosis dan kanker hati (hepatocellular carcinoma) sehingga berakibat kematian akibat kegagalan fungsi hati. Oleh karenanya, penyakit ini merupakan masalah kesehatan yang serius dan perlu penanganan yang baik. Menurut DALIMARTHRA [4] dan KANE et al. yang dikutip oleh WIDJAJA [5], menyatakan bahwa lebih dari 2 milyar penduduk di dunia telah terinfeksi VHB dan 300 - 350 juta adalah pengidap HBsAg. Prevalensi donor darah HBsAg di Indonesia bervariasi antara 2,4 - 9,1% dan didaerah tertentu seperti Nusa Tenggara prevalensinya lebih dari 10% [6].

Diagnosis laboratorium untuk mengetahui adanya infeksi VHB dan prognosis penyakit hepatitis B tersebut, dapat dilakukan dengan petanda serologik yang ada di dalam darah, seperti HBsAg, anti HBs, anti HBe, HBeAg, anti HBe, menggunakan teknik ELISA.

131
Teknik lain yang dapat mendeteksi adanya infeksi VHB adalah hibridisasi asam nukleat dengan pelacak DNA. Polymerase chain reaction (PCR) merupakan metode yang lebih sensitif dan spesifik dibandingkan dengan dua metode tersebut. DNA VHB yang dapat dideteksi dengan PCR adalah 1 - 10 ag (setara dengan 1 - 10 gen virus seragam dengan metode hibridisasi dengan pelacak DNA, konsentrasi DNA virus yang terdeteksi adalah 0,1 - 1 pg (setara dengan 10^{-6} - 10^{8} kopi genom virus) [2]. Proses PCR yang dilanjutkan dengan analisis hibridisasi menggunakan pelacak DNA yang berlabel radioisotop, kemampuan deteksiya meningkat menjadi 10^{5} kali lebih tinggi dibandingkan proses PCR dengan deteksi menggunakan elektroforesis gel agarosa dan pewarnaan etidium bromida [8].

Beberapa penyakit yang sering kali muncul setelah transplanatasi jaringan biologi antara lain keracunan obat dan infeksi karena virus. Oleh karena itu, jaringan biologi baik berasal dari donor hidup maupun nenasah, harus bebas dari virus seperti VHB, VHC (Virus Hepatitis C), HIV (Human Immunodeficiency Virus). PEREIRA et al., [9] menyatakan prevalensi anti VHC dalam donor nenasah yang dieliminasi adalah 1,8% (13 dari 716 donor) dan dari 11 donor tersebut, 5 donor positif untuk patologi serologik anti Hepatitis B core (anti HBe).

Dalam perkembangan Bank Jaringan Biologi di Indonesia khususnya Bank Jaringan Biologi Riset Batan, sangat diperlukan penelitian yang berkaitan dengan penyediaan jaringan biologi yang berkualitas tinggi [10]. Suatu penelitian untuk mendeteksi adanya agen penyebab penyakit khususnya virus seperti VHB, VHC, HIV pada donor jaringan biologi melalui pemeriksaan dirinya dengan metode cepat dan akurat yang mempunyai spesifitas dan sensitivitas tinggi seperti PCR, sangat diperlukan.

BAHAN DAN METODE

Persiapan DNA dari Sampel. Sepuluh serum darah dari laboratorium klinik digunakan dalam penelitian ini, terdiri dari 5 buah serum dengan HBsAg positif, 1 buah serum dengan HBsAg positif negatif, dan 3 buah serum dengan HBsAg negatif. Purifikasi dan ekstraksi DNA virus dilakukan dengan metode BOOM [11]. Secara singkat metode tersebut dapat dijelaskan sebagai berikut, larutan buffer lisis yang mengandung Tris-HCl, GuSCN (guanidinium thiocynate), EDTA, dan Triton X-100, ditambahkan ke dalam 100 μl serum. DNA virus kemudian dipurifikasi dan diekstraksi dengan menambahkan supensi diatom dalam HCl, buffer pencuci terdiri dari larutan Tris-HCl + GuSCN, etanol 70%, dan aseton. Pemisahan DNA dilakukan dengan menambahkan buffer clusi TE (Tris-EDTA), pemanasan pada suhu 56°C dan sentrifugasi pada kecepatan tinggi (12,000 rpm). Larutan DNA yang didapat selanjutnya dipakai untuk diampifikasi dengan metode PCR.

Proses Amplifikasi DNA.VHB. Amplifikasi DNA dilakukan dengan metode PCR menggunakan alat DNA thermocycler. Pada penelitian ini, 2 macam pasangan primer oligonukleotida yaitu pasangan primer I : PC1 (5'-CATAAGAGGACTCTTTGGACT-3') & PC2 (5'-AAAGATATCCAGGGCAACGACA-3'), didesain oleh OKAMOTO et al., yang dikemukakan oleh WIDJAJA et al., [5], dan pasangan primer II : P1 (5'- CAAGGTATGTTGGCCCTTGTG-3') & P2 (5'- AAGGCCTGCAACACTGA-3') [2]. dipakai untuk proses amplitifikasi. Penggunaan pasangan primer I (PC1 & PC2) dilakukan dengan 2 perlakuan (perlakuan La dan lb), yaitu 2 macam komposisi campuran PCR dan 2 macam program untuk proses amplitifikasi. Komposisi pertama (La) terdiri dari buffer reaksi 10 μM Tris-HCl & 50 μM KCl, larutan 2,0 mM MgCl₂, 200 μM deoksinnukleotida trifosfat (dNTP), konsentrasi primer masing-masing 15 pmol, dan 1 Unit Taq polymerase. Perbedaan komposisi larutan PCR pertama dan kedua (lb) adalah penambahan 0,01% larutan gelatin, penambahan konsentrasi, yaitu 2,5 mM MgCl₂, dan Taq polymerase 1,5 Unit sedangkan untuk pasangan primer II (P1 & P2), konsentrasi larutan yang digunakan 0,025%, konsentrasi primer 1 μM, dan Taq polymerase 2 Unit. DNA VHB dari sampel yang akan diampifikasi ditambahkan ke dalam larutan tersebut. Campuran kemudian ditambahkan dengan mineral oil. Proses amplitifikasi dilakukan dengan 3 tahap untuk setiap siklus, yaitu tahap denaturasi, annealing, dan extension. Tahap denaturasi untuk primer I (PC1 & PC2) campuran larutan PCR pertama (La), dan ke dua (lb) masing-masing adalah sebagai berikut : suhu 94°C, selama 1 menit, dan 95°C, 1 menit, sedangkan untuk pasangan primer II (P1 & P2) suhu yang digunakan 95°C selama 2 menit. Tahap annealing dilaksanakan dalam suhu 56°C, selama 1 menit untuk primer I dengan campuran larutan PCR pertama (La), suhu 55°C, 1 menit untuk campuran larutan ke dua (lb), dan suhu sama selama 2 menit untuk primer II. Tahap extension dilakukan dalam suhu 72°C selama 1 menit untuk pemakaian primer I larutan PCR pertama, (La) suhu yang sama, selama 2 menit untuk larutan PCR ke dua, dan suhu sama selama 2 menit untuk primer II. Jumlah siklus yang dipertahui baik untuk penggunaan ke dua macam primer tersebut sama, yaitu 35 siklus. Sebagai kontrol positif digunakan DNA dari serum darah pasien dengan DNA VHB positif hasil pemeriksaan dari suatu laboratorium klinik, sedangkan larutan PCR yang ditambah dengan buffer TE 1x dipakai sebagai kontrol negatif.

Deteksi DNA Hasil Amplifikasi. Fragmen DNA hasil amplifikasi sebanyak 8 μl setelah ditambah dengan loading buffer dianalisis dengan teknik elektroforesis gel agarosa dengan konsentrasi agarosa sebesar 1.5% (w/v). Proses elektroforesis dilakukan dalam buffer TBE (Tris-Borate-EDTA) dengan voltase konstan (100 V). Visualisasi DNA yang telah dielektroforesis, dilakukan dengan mewarnai gel dengan larutan etidium bromida dan memaparkan gel di bawah UV transilluminator. Penentuan ukuran berat molekul fragmen DNA hasil amplifikasi dilakukan dengan menggunakan penanda berat molekul (marker) CX174 Hae III.
HASIL DAN PEMBAHASAN

Hasil proses PCR menggunakan pasangan primer I dengan perlakuan I.a. dari 5 buah sampel serum darah dengan HBsAg positif, 1 serum dengan HBsAg positif lemah, 1 serum dengan DNA VHB negatif hasil PCR laboratorium lain, dan 3 serum dengan HBsAg negatif, dapat dilihat pada Gambar 1 dan 2. Dari 5 buah serum darah dengan HBsAg positif (sampel no. 1, 2, 3, 4, 5) ternyata hanya 3 buah sampel serum (sampel no. 1, 3, dan 5), yang menunjukkan DNA VHB positif menggunakan teknik PCR tersebut di atas, yaitu terlihat adanya pita DNA pada gel agarosa (Gambar 1, lajur 3, 5, Gambar 2, lajur 5). Semua serum dengan HBsAg negatif (sampel no. 7, 8, 9) hasil PCRnya juga negatif (Gambar 1, lajur 7 dan Gambar 2, lajur 3, 6). Demikian juga hasil PCR untuk 1 sampel dengan DNA VHB negatif berdasarkan tes PCR dari laboratorium lain, juga menunjukkan hasil negatif, yaitu tidak adanya pita fragmen DBA pada gel agarosa (Gambar 2, lajur 7). Besarnya produk PCR adalah sekitar 283 bp.

Gambar 3 dan 4 menunjukkan hasil proses PCR menggunakan pasangan primer yang sama dengan perlakuan I.b. seperti telah dijelaskan sebelumnya. Dari hasil tersebut terlihat bahwa 5 buah serum positif HBsAg, semuanya menunjukkan hasil PCR positif yaitu adanya fragmen DNA VHB (Gambar 3, lajur 3, 5, 6, dan Gambar 4, lajur 4, 5, 6), sedangkan 1 buah serum dengan DNA VHB negatif hasil PCR laboratorium lain, dengan tes PCR tersebut, menunjukkan hasil positif (Gambar 4, lajur 7). Sensitivitas tes PCR dengan pelakuan I.b ternyata lebih tinggi apabila dibandingkan dengan perlakuan I.a., meskipun sekvens primerinya sama, namun komposisi larutan sangat berperan di dalamnya juga program untuk proses amplifikasi. Optimasi amplifikasi sangat berperan terhadap sensitivitas dan spesifisitas reaksi amplifikasi. Faktor yang sangat berperan pada optimasi PCR antara lain adalah konsentrasi kation divalent (Mg++) dalam larutan MgCl2, konsentrasi enzim, konsentrasi nukleotida, konsentrasi primer, larutan tambahan untuk proses PCR, suhu untuk annealing dll. seperti misalnya konsentrasi ion magnesium apabila terlalu rendah menurunkan efisiensi reaksi sedangkan terlalu tinggi menurunkan spesifisitas. Demikian juga konsentrasi enzim (Tag polymerase) terlalu rendah menurunkan efisiensi amplifikasi dan konsentrasi terlalu tinggi menghasilkan fragmen DNA non spesifik [12]. Tes PCR dari laboratorium lain pada 1 sampel serum (sampel no. 10) menunjukkan hasil negatif, namun dengan tes PCR dalam penelitian ini (I.b.) menunjukkan hasil positif (Gambar 4, lajur 7). Salah satu kemungkinan yang menyebabkan adalah pasangan primer oligonukleotida yang digunakan dalam penelitian ini yaitu primer PC1 & PC2 (I.b.) lebih sensitif dibandingkan dengan primer dari laboratorium yang sebelumnya telah menganalisis sampel tersebut. Peneliti terdahulu menyatakan sensitivitas primer PC1 & PC2 cukup tinggi yaitu 0,1 pg/ml DNA VHB dalam serum [5].

Analisis produk PCR menggunakan pasangan primer II (P1 & P2) diperlihatkan pada Gambar 5 dan 6. Gambar tersebut menunjukkan 5 buah sampel serum dengan HBsAg positif, juga menunjukkan hasil positif dengan tes PCR tersebut (Gambar 5, lajur 3, 4, 5 dan Gambar 6, lajur 3, 4). dan hasil positif juga diperoleh dari 1 sampel negatif berdasarkan tes PCR dari laboratorium lain (sampel no. 10) (Gambar 6, lajur 7). Besarnya fragmen DNA hasil amplifikasi adalah 259 bp. Data lain menyatakan dari 3 buah serum HBsAg negatif, 1 serum menunjukkan hasil positif, yaitu sampel no. 8 dengan fragmen DNA yang dibahas lebih kecil dari 259 bp. (Gambar 6, lajur 5). Berdasarkan sekvens dari gen VHB, ukuran fragmen DNA tersebut yang lebih kecil, kemungkinan disebabkan adanya beberapa basa pada genom tersebut (TCAGT) pada lokasi berbeda yang berkomplemen dengan beberapa basa (AGTCA) dari primer oligonukleotida P2 [13]. Sensitivitas teknik PCR menggunakan primer P1 & P2 lebih tinggi dibanding dengan menggunakan primer PC1 & PC2. Primer ini didesain dari gen HBs dengan PC1 & PC2 didesain dari daerah precore/core VHB. Sebagaimana telah dijelaskan 1 sampai dengan 10 ag DNA VHB (setara dengan 1 sampai dengan 100000 virus) dapat dideteksi dengan teknik tersebut (2). Menurut penelitian MULYONO [14], serum HBsAg negatif dapat mengandung DNA VHB. Kemungkinan yang terjadi adalah adanya VHB spesifik berkaitan dengan daerah geografi. Dilaporkan adanya individu non-respons terhadap vaksinasi dengan munculnya VHB yang mengalami mutasi pada antigen permukaan (HBsAg) dan kemungkinan mutan HBsAg tidak terdeteksi dengan reagen yang ada.

Semua tes PCR yang dilakukan dalam penelitian ini pada sampel dengan HBsAg positif lemah, menunjukkan hasil negatif. Hal ini mungkin disebabkan VHB sudah tidak mengadakan replikasi atau perlu dilakukan suatu teknik yang lebih sensitif seperti nested PCR ataupun teknik PCR dilanjutkan dengan teknik hibridasi yang dideteksi deteksi dengan pelacak DNA berlabel radioaktif. Menurut BONINO et al., MATSUYAMA et al., dan NEGRO et al yang dikutip oleh YOKOSUKA et al [15], terdapatnya DNA VHB dalam serum, menunjukkan adanya replikasi virus dan bersifat sangat infectious.

KESIMPULAN

Deteksi adanya VHB dalam serum darah dengan teknik PCR menggunakan primer oligonukleotida P1 & P2 lebih sensitif dibanding dengan pasangan primer PC1 & PC2. Sedangkan penggunaan primer PC1 & PC2 dengan 2 perlakuan (I.a. & l.b) menunjukkan tes PCR I.b. lebih sensitif dari pada I.a.

Sensitivitas teknik PCR dalam penelitian ini dapat ditingkatkan dengan menggunakan teknik yang lebih sensitif yaitu nested PCR atau teknik PCR dilanjutkan hibridasi dan deteksi dengan menggunakan pelacak DNA berlabel radioaktif.
UCAPAN TERIMA KASIH

DAFTAR PUSTAKA

13. Komunikasi pribadi

Gambar 1. Hasil PCR VHB dari serum dengan primer PC1 & PC2 (1.4 kbp) menggunakan teknik elektroforeisis gel agarosa.

Laju 1: Marker GQX174 Hae III
Laju 2: Kontrol +
Laju 3: Sampel 1 (HBsAg +)
Laju 4: Sampel 2 (HBsAg +)
Laju 5: Sampel 3 (HBsAg +)
Laju 6: Sampel 4 (HBsAg + lemah)
Laju 7: Sampel 5 (HBsAg -)
Laju 8: Kontrol -

Gambar 2. Hasil PCR VHB dari serum dengan primer PC1 & PC2 (1.4 kbp) menggunakan teknik elektroforeisis gel agarosa.

Laju 1: Marker GQX174 Hae III
Laju 2: Kontrol +
Laju 3: Sampel 8 (HBsAg -)
Laju 4: Sampel 9 (HBsAg +)
Laju 5: Sampel 10 (HBsAg +)
Laju 6: Sampel 11 (HBsAg -)
Laju 7: Sampel 12 (DNA VHB -)
Laju 8: Kontrol -

Gambar 3. Hasil PCR VHB dari serum dengan primer PC1 & PC2 (1.4 kbp) menggunakan teknik elektroforeisis gel agarosa.

Laju 1: Marker GQX174 Hae III
Laju 2: Kontrol +
Laju 3: Sampel 2 (HBsAg +)
Laju 4: Sampel 7 (HBsAg -)
Laju 5: Sampel 1 (HBsAg +)
Laju 6: Sampel 3 (HBsAg +)
Laju 7: Sampel 6 (HBsAg + lemah)
Laju 8: Kontrol -

Gambar 4. Hasil PCR VHB dari serum dengan primer PC1 & PC2 (1.4 kbp) menggunakan teknik elektroforeisis gel agarosa.

Laju 1: Marker GQX174 Hae III
Laju 2: Kontrol +
Laju 3: Sampel 8 (HBsAg -)
Laju 4: Sampel 9 (HBsAg +)
Laju 5: Sampel 10 (HBsAg +)
Laju 6: Sampel 11 (HBsAg -)
Laju 7: Sampel 12 (DNA VHB -)
Laju 8: Kontrol -
Gambar 5. Hasil PCR VHB dari serum dengan primer P1 & P2 menggunakan teknik elektroforetis gel agarosa.

Lajur 1: Marker 6X174 Hae III
Lajur 2: Kontrol -
Lajur 3: Sampel 1 (HbsAg +)
Lajur 4: Sampel 2 (HbsAg +)
Lajur 5: Sampel 3 (HbsAg +)
Lajur 6: Sampel 6 (HbsAg +lemah)
Lajur 7: Sampel 6 (HbsAg -)
Lajur 8: Kontrol -

Gambar 6. Hasil PCR VHB dari serum dengan primer P1 & P2 menggunakan teknik elektroforetis gel agarosa.

Lajur 1: Marker 6X174 Hae III
Lajur 2: Kontrol +
Lajur 3: Sampel 4 (HbsAg +)
Lajur 4: Sampel 5 (HbsAg +)
Lajur 5: Sampel 8 (HbsAg -)
Lajur 6: Sampel 9 (HbsAg -)
Lajur 7: Sampel 10 (DNA VHB -)
Lajur 8: Kontrol -

DISKUSI

KRISNA LUMBANRAJA

Anda menggunakan alat baru (PCR) apakah anda sudah dapat mengkompensirkan? dan berapakah biaya operasional untuk satu sampel?

MARIA LINA

PCR (DNA Thermocycler) sudah ada sejak 7 tahun yang lalu, alat ini sudah dapat dikomersilkan asalkan dana pendukungnya cukup, biaya operasional untuk persatu sampel pemeriksaan virus hepatitis B ± Rp. 400.000,-