Uranium Removal from Wastewater Using Mg(OH)2-Impregnated Activated Carbon


Uranium wastewater treatment has been performed by adsorption method using Mg(OH)2-impregnated activated carbon. Research purposes are to determine (i) uptake capacity of the adsorption isotherm of uranium in Mg(OH)2-impregnated activated carbon, (ii) mathematical correlation of uranium (VI) adsorption rate, and (iii) effect of the impregnation ratio of adsorbent to uranium removal efficiency. Adsorbent was synthesized through several stages, i.e., pyrolysis of coconut shell (400 °C), chemical activation using NaOH, and impregnation process using varied solutions of MgCl2 (600 °C). The materials were characterized comprehensively using FTIR, BET, XRF, and XRD. The parameters studied in this research were adsorption temperature (T), average particle diameter of adsorbent (d), mass ratio of adsorbent to wastewater solution (r), and impregnation ratio of Mg(OH)2/activated carbon. The results shown that equilibrium data are well fitted with the Langmuir isotherm model with the maximum adsorption capacity about 85 mg/g at 303 K and dimensionless constant separation factor (RL) value about 0.7. The adsorption rate was increased by increasing the adsorption temperature, mass ratio of adsorbent to wastewater solution, and the decrease of particle diameter of adsorbent with mathematical equation of the uranium (VI) adsorption rate as:

$$ \ln \frac{C}{C_0}=-\left[85032.11\exp \left(-\frac{41981.03}{RT}\right){d}^{-0.2176}{r}^{0.1925}\right]{t}^2 $$

In addition, the results also shown that increasing the impregnation ratio from 0.3 to 1.0 can increase the uranium removal efficiency up to 67.3%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Abbasi, W. A., & Streat, M. (1994). Separation science and technology adsorption of uranium from aqueous solutions using activated carbon. Separation Science and Technology, 29(9), 37–41. https://doi.org/10.1080/01496399408005627.

    Article  Google Scholar 

  2. Abbasi, W. A., & Streat, M. (1998). Sorption of uranium from nitric acid solution using Tbp-impregnated activated carbons. Solvent Extraction and Ion Exchange, 16(5), 1303–1320. https://doi.org/10.1080/07360299808934581.

    Article  CAS  Google Scholar 

  3. Adiningtyas, A., & Mulyono, P. (2016). Kinetika Adsorpsi Nikel (II) dalam Larutan Aqueous dengan Karbon Aktif Arang Tempurung Kelapa. Jurnal Rekayasa Proses, 10(2), 36. https://doi.org/10.22146/jrekpros.33335.

    Article  Google Scholar 

  4. Apriliani, A. (2010). Pemanfaatan Arang Ampas Tebu sebagai Adsorben Ion Logam Cd, Cr, Cu dan Pb dalam Air Limbah. Skripsi, 1–63. https://doi.org/10.1016/j.actbio.2011.09.032.

    Article  CAS  Google Scholar 

  5. Benedict, M., Pigford, T. H., & Levi, H. W. (1981). Nuclear chemical engineering (second.). United States: McGraw-Hill Book Company.

    Google Scholar 

  6. Chen, C. Y., Lin, C. I., & Chen, H. K. (2003). Kinetics of adsorption of β-carotene from soy oil with activated rice hull ash. Journal of Chemical Engineering of Japan. https://doi.org/10.1252/jcej.36.265.

    Article  CAS  Google Scholar 

  7. Fujiwara, K., Yamana, H., Fujii, T., Kawamoto, K., Sasaki, T., & Moriyama, H. (2005). Solubility product of hexavalent uranium hydrous oxide. Journal of Nuclear Science and Technology, 42(3), 289–294. https://doi.org/10.1080/18811248.2005.9726392.

    Article  CAS  Google Scholar 

  8. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  9. Ilmi, M. M., Khoiroh, N., Firmansyah, T. B., & Santoso, E. (2017). Optimasi Penggunaan Biosorbent Berbasis Biomassa: Pengaruh Konsentrasi Aktivator Terhadap Luas Permukaan Karbon Aktif Berbahan Eceng Gondok (Eichornia Crossipes) Untuk Meningkatkan Kualitas Air. Jurnal Teknik Mesin, 6(2), 69. https://doi.org/10.22441/jtm.v6i2.1193.

    Article  Google Scholar 

  10. Khoriatin, I. W. (2014). Mekanisme dan Termodinamika Adsorpsi Zeolit Alam Teraktivasi Untuk Pengolahan Limbah Uranium. Sekolah Tinggi Teknologi Nuklir BATAN

  11. Kütahyali, C., & Eral, M. (2004). Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Separation and Purification Technology, 40(2), 109–114. https://doi.org/10.1016/j.seppur.2004.01.011.

    Article  CAS  Google Scholar 

  12. Mellah, A., Silem, A., Boualia, A., & Kada, R. (1992). Adsorption of organic matter from a wet phosphoric acid using activated carbon: batch-contact time study and linear driving force models. Canadian Journal of Chemical Engineering, 70(3), 491–498. https://doi.org/10.1016/0255-2701(92)80015-U.

    Article  Google Scholar 

  13. Mookherjee, M., & Stixrude, L. (2006). High-pressure proton disorder in brucite. American Mineralogist, 91(1), 127–134. https://doi.org/10.2138/am.2006.1886.

    Article  CAS  Google Scholar 

  14. Mulyono, P., & Kusuma, W. M. (2010). Kinetika Adsorpsi Phenol Dalam Air Dengan Arang Tempurung Kelapa. Forum Teknik, 33(2), 103–110.

    Google Scholar 

  15. Saleem, M., Afzal, M., Qadeer, R., & Hanif, J. (1992). Selective adsorption of uranium on activated charcoal from electrolytic aqueous solutions. Separation Science and Technology, 27(2), 239–253. https://doi.org/10.1080/01496399208018876.

    Article  CAS  Google Scholar 

  16. Shao, L., Zhou, Y., Chen, J. F., Wu, W., & Lu, S. C. (2005). Buffer behavior of brucite in removing copper from acidic solution. Minerals Engineering, 18(6), 639–641. https://doi.org/10.1016/j.mineng.2004.09.009.

    Article  CAS  Google Scholar 

  17. Surendranathan, A. O. (2015). An introduction to ceramics and refractories. An introduction to ceramics and refractories. New York: CRC Press. https://doi.org/10.1201/b17811.

    Google Scholar 

  18. Tamura, H., Tanaka, A., Mita, K. Y., & Furuichi, R. (1999). Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity. Journal of Colloid and Interface Science, 209(1), 225–231. https://doi.org/10.1006/jcis.1998.5877.

    Article  CAS  Google Scholar 

  19. Wang, G., Liu, J., Wang, X., Xie. Z., & Deng, N. (2009). Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Hazardaous Materials, 168(2-3), 1053–1058.

Download references


This work was totally funded by Ministry of Finance of the Republic of Indonesia through master scholarship of LPDP Indonesia. The authors gratefully acknowledge the funding.

Author information



Corresponding author

Correspondence to Hary Sulistyo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saputra, A., Swantomo, D., Ariyanto, T. et al. Uranium Removal from Wastewater Using Mg(OH)2-Impregnated Activated Carbon. Water Air Soil Pollut 230, 213 (2019). https://doi.org/10.1007/s11270-019-4269-8

Download citation


  • Activated carbon
  • Adsorption isotherm
  • Adsorption kinetics
  • Uranium wastewater