PENCANGKOKAN MALEAT ANHIDRAT PADA POLIETHYLEN DENSITAS RENDAH (LDPE) DENGAN RADIASI SINAR Y

Sudradjat Iskandar dan Devi Listina Prawitasari
PENCANGKOKKAN MALEAT ANHIDRAT PADA POLIETILEN DENSITAS RENDAH (LDPE) DENGAN RADIASI SINAR γ

Sudradiat Iskandar dan Devi Listina Prawitasari
Pusat Aplikasi Isotop dan Radiasi, BATAN

ABSTRAK

PENCANGKOKKAN MALEAT ANHIDRAT PADA POLIETILEN DENSITAS RENDAH (LDPE) DENGAN RADIASI SINAR γ. Dalam upaya membuat bahan baru pengkopolis telah dilakukan penelitian campuran tepung tapioka-LDPE dengan mencangkokkan maleat anhidrat (MAH) pada LDPE menggunakan radiasi sinar γ. Pada penelitian ini dibuat satu campuran LDPE-MAH dengan labopok stomil pada suhu 135$^\circ$C selama 5 menit. Sampel berupa film dibuat dengan metode peng-rasen. Film yang terbentuk selanjutnya diiradiasi dengan sinar γ pada dosis yang bervariasi. Irradiasi dilakukan pada suhu kamar dan kondisi suasana gas nitrogen. Film campuran LDPE-MAH selanjutnya dicampurkan pada campuran LDPE-TT dengan kadar TT 100 psp dan MAH yang bervariasi. Karakterisasi sampel dilakukan dengan alat uji tarik dan mikroskop elektron (SEM). Hasil penelitian menunjukkan bahwa pencangkokkan MAH pada LDPE dengan radiasi sinar γ dapat dipakai sebagai pengkopolis campuran TT-LDPE. Campuran LDPE-MAH dengan kadar MAH 10 psp (bagian perseratus bagian LDPE) yang diiradiasi 25 kGy dapat meningkatkan sebanyak 115 % tegangan putus campuran LDPE-TT dengan kadar TT 100 psp.
ABSTRACT

RADIATION GRAFTING OF MALEIC ANHYDRIDE ON LOW DENSITY POLYETHYLENE (LDPE). To obtain a new compatibilizer for tapioca powder (TP) - LDPE blend, studies on the effect of γ radiation grafting of maleic anhydride into LDPE on compatibility of TP-LDPE blend have been done. MAH-LDPE mixture was blended by using laboplastomil at 135°C for 5 minutes. The blend then made a film using a hot and cold press machine and irradiated at different dose in the nitrogen gas inert condition. The compatibility of MAH-LDPE blend on TP-LDPE blend was observed by blending the MAH-LDPE blend with TP-LDPE blend. The characterization of the samples was conducted with using tensile tester and electron microscop (SEM). The experimental results showed that the radiation grafting of MAH into LDPE was improved the compatibility of TP-LDPE blend. The MAH-LDPE blend containing MAH 10 psp and irradiated at 25 kGy was found a good compatibilizer and increasing 115% tensile strength of TP-LDPE blend containing 100 psp TP.

PENDAHULUAN

Masalah limbah plastik yang sulit terdegradasi di alam tetap satu ini masih menjadi perhatian yang serius dikalangan peneliti. Membuat bahan baru dengan menggabungkan polimer sintetis yang susah terdegradasi di alam dengan polimer alam yang mudah terdegradasi adalah salah satu cara jalan keluar untuk mengatasi masalah limbah tersebut. Akan tetapi menggabungkan kedua polimer tersebut tidaklah mudah karena kedua polimer tersebut memiliki beberapa sifat yang berlawanan seperti polimer sintetis bersifat hidropilk, sedangkan polimer alam kebanyakan bersifat hidropolis sehingga menimbulkan masalah baru yaitu kedua polimer tersebut tidak dapat mengikat satu sama lain pada permukaan molekulnya atau tidak
kompatibel. Ketidak kompatibelannya kedua polimer tersebut dapat mengakibatkan turunnya sifat fisika campuran polimer yang dihasilkan sehingga penggunaannya sangat terbatas sekali dan mungkin tidak dapat dipakai sebagai bahan dasar yang berulang. Polietilen mempunyai sifat sebagai polimer sintetis yang paling banyak dipakai di Indonesia (1) baik untuk bahan baku pengemas, alat kedokteran, kosmetik, wadah obat, untuk keperluan rumah tangga atau perkebunan, maka akan digunakan sebagai dasar dalam penelitian ini. Tepung tapioka adalah polimer alam yang murah harganya yang mudah terdegradasi di alam dan dapat dipakai sebagai bahan pengisi untuk menurunkan ongkos produksi. Selain itu tepung tapioka memiliki ketahanan terhadap suhu tinggi. Pemanfaatan tepung tapioka sebagai bahan pengisi polietilen telah diteliti dan memberikan pengaruh terhadap sifat fisik polietilen (2).

Dalam penelitian ini radiasi sinar γ dipakai untuk mencangkok MAH pada LDPE yang selanjutnya MAH yang tercangkok pada LDPE dipakai sebagai bahan pengkompatibel campuran TT-LDPE. Campuran [MAH-LDPE]-TT-LDPE dilaporkan merupakan hasil akhir dalam penelitian ini yang selanjutnya dapat dipakai sebagai bahan dasar barang jadi plastik yang memiliki sifat elastik yang baik dan ramah lingkungan. Radiasi sinar γ telah lama dipakai untuk mensterilkan alat kedokteran yang berasal dari plastik dan merupakan salah satu teknik
terbesar dalam penggunaan radiasi yang efektif dan telah berkena bang dengan pesatnya di dunia (6), maka diteliti pula pengaruh radiasi sinar γ terhadap sifat fisik produk akhir (campuran [MAH-LDPE] - TT-LDPE).

Oleh karena itu di dalam makalah ini dibahas pengaruh MAH dan iradiasi sinar γ terhadap kompatibilitas campuran tepung tapioka-LDPE dan pengaruh iradiasi sinar γ terhadap sifat fisika campuran [MAH-LDPE]-TT-LDPE. Pengukuran sifat kompatibilitas campuran tepung tapioka-LDPE dilakukan dengan mengamati sifat fisika dan struktur mikro permukaan patahan film campuran tepung tapioka-LDPE.

BAHAN DAN METODE

Bahan. LDPE buatan Korea dengan nama dagang Samsurg, tepung tapioka (TT) yang diperoleh dari super market HERO dan maleat anhidrat (MAH) buatan Merck dipakai dalam penelitian ini.

Metode. Diagram analisis pencangkokkan maleat anhidra pada LDPE sebagai bahan pengkompatibel campuran TT-LDPE ditunjukkan pada Gamba 1a. LDPE pertama dicampur dengan MAH dengan menggunakan laboplastomil pada suhu 135°C selama 5 menit. Kadar MAH dalam campuran sebanyak 10 psp, selanjutnya dibuat film dengan menggunakan mesin press panas dan dingin masing-masing pada suhu 135°C dan suhu kamar selama 3 menit. Film yang terbentuk selanjutnya diiradiasi dengan sinar γ pada dosis yang bervariasi dari 0, 10, 25 sampai dengan 50 kGy dalam kondisi suasana gas nitrogen. Film iradiasi kemudian dicampurkan pada campuran TT-LDPE dengan kadar TT 100 psp. Untuk kondisi campuran yang terbaik selanjutnya dicampurkan dengan LDPE dengan komposisi yang beragam, dan untuk mengetahui pengaruh iradiasi dari campuran tersebut terhadap sifat fisikanya, selanjutnya sampel diiradiasi dengan sinar γ pada dosis yang bervariasi dari 0, 10, 25 sampai 50 kGy.

Analisis Mikroskopik Sampel. Pengamatan struktur mikro dari permukaan patahan film sampel dilakukan dengan mikroskop elektron skaning (SEM) tipe JSM T-300 buatan JEOL. Patahan sampel diperoleh dengan metode perendaman dalam nitrogen cair.

HASIL DAN BAHASAN

Telah dilaporkan bahwa penambahan tepung tapioka (TT) mempengaruhi tegangan putus campuran TT-LDPE (5), dimana penelitian tegangan putus campuran TT-LDPE tersebut berkurang dengan bertambahnya TT. Berkurangnya tegangan putus ini kemungkinan disebabkan tidak terikatnya permukaan molekul TT pada permukaan molekul LDPE. Hal ini karena TT bersifat hidropilik dan polar sedangkan LDPE bersi at hidropobik dan non polar. Secara visual ketidakterikatan antara permukaan kedua polimer tersebut terlihat pada pengamatan mikroskopi dari permukaan patahan film campuran seperti pada Gambar 1. Pengamatan pada Gambar 1 berupa foto elektron mikroskop dari permukaan patahan melintang campuran TT-LDPE dengan kadar TT 75 psp, dan perbesaran foto 2000x memperlihatkan bahwa TT berupa granulat yang terdispersi pada matrik LDPE berada diantara permukaan kedua polimer tersebut dan memperlihatkan adanya celah yang membatasi kedua polimer tersebut, sehingga menyebabkan turunnya sifat tegangan putus campuran kedua polimer tersebut. Dengan bertambahnya TT akan bertambah pula celah yang terbentuk dan mengakibatkan semakin berkurangnya tegangan putus kedua campuran tersebut.

Suatu paduan polimer akan menjadi kuat bila diantara permukaan kedua polimer tersebut menjadi satu atau ada ikatan satu sama lain. Untuk mengikatkan TT dengan LDPE diperlukan
bahan kimia yang dapat mengikat kedua polimer tersebut, bahan kimia yang digunakan dapat bersifat hidropilk dan dapat mengikat pada LDPE. Oleh karena salah satu zat yang memenuhi syarat adalah MAH, dimana bahan kimia tersebut bersifat poliar, hidropilk dan memiliki ikatan rangkap untuk dipakai sebagai pengikat pada LDPE atau polimer lain. Penelitian lain juga menunjukkan bahwa MAH dapat diikatkan pada polipropilen dan akan meningkatkan kompatibilitas campuran TT-polipropilen (3). Hubungan pengaruh iradiasi sinar γ terhadap kompatibilitas MAH-LDPE (MALE) pada campuran TT-LDI E ditunjukkan pada Gambar 2.

demikian perpanjangan putus campuran polisa-LDPE hingga penambahan polisa sebanyak 50 psp masih ada. Berkurangnya perpanjangan putus campuran polisa-LDPE tersebut disebabkan karena TT yang terkandung dalam polisa merupakan granulat yang berbentuk amorf yang tidak memiliki sifat perpanjangan putus sekalipun sudah terkat dengan baik pada LDPE. Gambar 3a memperlihatkan elektron mikrograph permukaan patahan film campuran polisa-LDPE dengan kadar polisap, perbesaran foto 1500x, dimana gambar tersebut memperlihatkan granulat-granulat TT yang berbentuk bola dengan ukuran yang heterogen terdistribusi pada matrik MAH-LDPE. Untuk mengetahui pengaruh besarnya campuran polisa-LDPE terhadap ketahanan dari iradiasi sinar γ maka dilakukan pengujian sifat fisika pada campuran tersebut sebelum dan setelah diiradiasi dan hasilnya dapat ditunjukkan pada Gambar 4. Gambar tersebut memperlihatkan bahwa kurva perpanjangan putus campuran polisa-LDPE cenderung bertambah sedikit dengan bertambahnya dosis iradiasi. Cecenderungan bertambahnya perpanjangan putus ini disebabkan karena molekul-molekul LDI E akan berikatan silang setelah diiradiasi dengan sinar γ dan LDPE merupakan bagian terbaik pada campuran tersebut, sehingga sifat yang mendominasi pada campuran tersebut adalah LDPE.

KESIMPULAN

Dari hasil penelitian dapat diambil kesimpulan bahwa MAH yang dicangkokkan pada LDPE dengan radiasi sinar γ dapat meningkatkan kompatibilitas campuran tepung tapioka dan LDPE. Campuran MAH-LDPE dengan kadar MAH 10 psp yang diadisi dengan sinar γ pada 25 kGy dapat meningkatkan 115% tegangan putus campuran tepung tapioka-LDPE dengan kadar tepung tapioka 100 psp. Penambahan kadar LDPE yang lebih banyak akan menghasilkan campuran tepung tapioka-MAH-LDPE yang memiliki sifat plastis. Campuran LDPE-tepung
tapioka-MAH dengan kadar tepung tapioka dan MAH yang ber variasi tahan terhadap iradiasi sinar γ.

DAFTAR PUSTAKA